merge: upload transformers implementation
#10
by
jon-tow
- opened
config.json
CHANGED
@@ -1,11 +1,7 @@
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
-
"
|
4 |
],
|
5 |
-
"auto_map": {
|
6 |
-
"AutoConfig": "configuration_stablelm_epoch.StableLMEpochConfig",
|
7 |
-
"AutoModelForCausalLM": "modeling_stablelm_epoch.StableLMEpochForCausalLM"
|
8 |
-
},
|
9 |
"bos_token_id": 0,
|
10 |
"eos_token_id": 0,
|
11 |
"hidden_act": "silu",
|
@@ -13,18 +9,17 @@
|
|
13 |
"initializer_range": 0.02,
|
14 |
"intermediate_size": 6912,
|
15 |
"max_position_embeddings": 4096,
|
16 |
-
"model_type": "
|
17 |
-
"
|
18 |
"num_attention_heads": 32,
|
19 |
-
"num_heads": 32,
|
20 |
"num_hidden_layers": 32,
|
21 |
"num_key_value_heads": 32,
|
22 |
-
"
|
23 |
"rope_theta": 10000,
|
24 |
-
"rotary_scaling_factor": 1.0,
|
25 |
"tie_word_embeddings": false,
|
26 |
"torch_dtype": "bfloat16",
|
27 |
-
"transformers_version": "4.
|
28 |
"use_cache": true,
|
|
|
29 |
"vocab_size": 50304
|
30 |
}
|
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
+
"StableLmForCausalLM"
|
4 |
],
|
|
|
|
|
|
|
|
|
5 |
"bos_token_id": 0,
|
6 |
"eos_token_id": 0,
|
7 |
"hidden_act": "silu",
|
|
|
9 |
"initializer_range": 0.02,
|
10 |
"intermediate_size": 6912,
|
11 |
"max_position_embeddings": 4096,
|
12 |
+
"model_type": "stablelm",
|
13 |
+
"layer_norm_eps": 1e-05,
|
14 |
"num_attention_heads": 32,
|
|
|
15 |
"num_hidden_layers": 32,
|
16 |
"num_key_value_heads": 32,
|
17 |
+
"partial_rotary_factor": 0.25,
|
18 |
"rope_theta": 10000,
|
|
|
19 |
"tie_word_embeddings": false,
|
20 |
"torch_dtype": "bfloat16",
|
21 |
+
"transformers_version": "4.38.0",
|
22 |
"use_cache": true,
|
23 |
+
"use_qkv_bias": false,
|
24 |
"vocab_size": 50304
|
25 |
}
|
configuration_stablelm_epoch.py → configuration_stablelm.py
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
@@ -12,32 +12,45 @@
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
-
""" StableLM
|
16 |
-
|
|
|
17 |
from transformers.utils import logging
|
18 |
|
19 |
|
20 |
logger = logging.get_logger(__name__)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
class
|
24 |
r"""
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
Args:
|
29 |
-
vocab_size (`int`, *optional*, defaults to
|
30 |
Vocabulary size of the StableLM model. Defines the number of different tokens that
|
31 |
-
can be represented by the `inputs_ids` passed when calling [`
|
32 |
intermediate_size (`int`, *optional*, defaults to 6912):
|
33 |
Dimension of the MLP representations.
|
34 |
hidden_size (`int`, *optional*, defaults to 2560):
|
35 |
-
|
36 |
num_hidden_layers (`int`, *optional*, defaults to 32):
|
37 |
Number of hidden layers in the Transformer decoder.
|
38 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
39 |
Number of attention heads for each attention layer in the Transformer encoder.
|
40 |
-
num_key_value_heads (`int`, *optional
|
41 |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
42 |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
43 |
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
@@ -47,68 +60,124 @@ class StableLMEpochConfig(PretrainedConfig):
|
|
47 |
`num_attention_heads`.
|
48 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
49 |
The non-linear activation function (function or string).
|
50 |
-
|
51 |
-
Percentage of hidden dimensions to allocate to rotary embeddings.
|
52 |
-
rope_theta (`float`, *optional*, defaults to 10000.0):
|
53 |
-
The base period of the RoPE embeddings.
|
54 |
-
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
55 |
The maximum sequence length that this model might ever be used with.
|
56 |
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
57 |
-
initializer_range (`float`, *optional*, defaults to
|
58 |
The standard deviation of the truncated_normal_initializer for initializing
|
59 |
all weight matrices.
|
60 |
-
|
61 |
The epsilon used by the normalization layers.
|
62 |
use_cache (`bool`, *optional*, defaults to `True`):
|
63 |
Whether or not the model should return the last key/values attentions
|
64 |
(not used by all models). Only relevant if `config.is_decoder=True`.
|
65 |
-
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
66 |
-
Whether
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
68 |
The dropout ratio for the attention probabilities.
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
keys_to_ignore_at_inference = ["past_key_values"]
|
72 |
|
73 |
def __init__(
|
74 |
self,
|
75 |
-
vocab_size=
|
76 |
intermediate_size=6912,
|
77 |
hidden_size=2560,
|
78 |
num_hidden_layers=32,
|
79 |
num_attention_heads=32,
|
80 |
num_key_value_heads=32,
|
81 |
hidden_act="silu",
|
82 |
-
rope_pct=0.25,
|
83 |
-
rope_theta=10_000,
|
84 |
max_position_embeddings=4096,
|
85 |
initializer_range=0.02,
|
86 |
-
|
87 |
use_cache=True,
|
88 |
-
bos_token_id=0,
|
89 |
-
eos_token_id=2,
|
90 |
tie_word_embeddings=False,
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
**kwargs,
|
93 |
):
|
94 |
self.vocab_size = vocab_size
|
95 |
self.max_position_embeddings = max_position_embeddings
|
96 |
-
|
97 |
self.hidden_size = hidden_size
|
|
|
98 |
self.num_hidden_layers = num_hidden_layers
|
99 |
self.num_attention_heads = num_attention_heads
|
100 |
self.num_key_value_heads = num_key_value_heads
|
101 |
self.hidden_act = hidden_act
|
102 |
-
|
103 |
-
self.rope_theta = rope_theta
|
104 |
self.initializer_range = initializer_range
|
105 |
-
self.
|
106 |
self.use_cache = use_cache
|
107 |
-
self.
|
|
|
|
|
|
|
108 |
self.attention_dropout = attention_dropout
|
|
|
|
|
|
|
109 |
super().__init__(
|
110 |
bos_token_id=bos_token_id,
|
111 |
eos_token_id=eos_token_id,
|
112 |
tie_word_embeddings=tie_word_embeddings,
|
113 |
**kwargs,
|
114 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2024 Stability AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
+
""" StableLM model configuration """
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
from transformers.utils import logging
|
19 |
|
20 |
|
21 |
logger = logging.get_logger(__name__)
|
22 |
|
23 |
+
STABLELM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"stabilityai/stablelm-3b-4e1t": "https://huggingface.co/stabilityai/stablelm-3b-4e1t/resolve/main/config.json",
|
25 |
+
# See all StableLM models at https://huggingface.co/models?filter=stablelm
|
26 |
+
}
|
27 |
+
|
28 |
|
29 |
+
class StableLmConfig(PretrainedConfig):
|
30 |
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`~StableLmModel`].
|
32 |
+
It is used to instantiate an StableLM model according to the specified arguments, defining the model
|
33 |
+
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
|
34 |
+
the StableLM [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used
|
37 |
+
to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
38 |
+
for more information.
|
39 |
+
|
40 |
|
41 |
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 50304):
|
43 |
Vocabulary size of the StableLM model. Defines the number of different tokens that
|
44 |
+
can be represented by the `inputs_ids` passed when calling [`StableLmModel`].
|
45 |
intermediate_size (`int`, *optional*, defaults to 6912):
|
46 |
Dimension of the MLP representations.
|
47 |
hidden_size (`int`, *optional*, defaults to 2560):
|
48 |
+
Number of hidden layers in the Transformer decoder.
|
49 |
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
Number of hidden layers in the Transformer decoder.
|
51 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
54 |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
|
|
60 |
`num_attention_heads`.
|
61 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
62 |
The non-linear activation function (function or string).
|
63 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
|
|
|
|
|
|
|
|
64 |
The maximum sequence length that this model might ever be used with.
|
65 |
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
The standard deviation of the truncated_normal_initializer for initializing
|
68 |
all weight matrices.
|
69 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
70 |
The epsilon used by the normalization layers.
|
71 |
use_cache (`bool`, *optional*, defaults to `True`):
|
72 |
Whether or not the model should return the last key/values attentions
|
73 |
(not used by all models). Only relevant if `config.is_decoder=True`.
|
74 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
75 |
+
Whether the model's input and output word embeddings should be tied.
|
76 |
+
rope_theta (`float`, *optional*, defaults to `10000.0`):
|
77 |
+
The base period of the RoPE embeddings.
|
78 |
+
rope_scaling (`Dict`, *optional*):
|
79 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
80 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
81 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
82 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
83 |
+
these scaling strategies behave:
|
84 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
|
85 |
+
is an experimental feature, subject to breaking API changes in future versions.
|
86 |
+
use_qkv_bias (`bool`, *optional*, defaults to `False`):
|
87 |
+
Whether or not the model should use bias for qkv layers.
|
88 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
89 |
+
The dropout ratio after applying the MLP to the hidden states.
|
90 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
91 |
The dropout ratio for the attention probabilities.
|
92 |
+
partial_rotary_factor (`float`, *optional*, defaults to 0.25):
|
93 |
+
Percentage of the query and keys which will have rotary embedding.
|
94 |
+
bos_token_id (int, *optional*, defaults to 0):
|
95 |
+
The id of the `BOS` token in the vocabulary.
|
96 |
+
eos_token_id (int, *optional*, defaults to 0):
|
97 |
+
The id of the `EOS` token in the vocabulary.
|
98 |
+
|
99 |
+
Example:
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import StableLmModel, StableLmConfig
|
103 |
+
|
104 |
+
>>> # Initializing a StableLM stablelm-3b style configuration
|
105 |
+
>>> configuration = StableLmConfig()
|
106 |
+
```"""
|
107 |
+
|
108 |
+
model_type = "stablelm"
|
109 |
keys_to_ignore_at_inference = ["past_key_values"]
|
110 |
|
111 |
def __init__(
|
112 |
self,
|
113 |
+
vocab_size=50304,
|
114 |
intermediate_size=6912,
|
115 |
hidden_size=2560,
|
116 |
num_hidden_layers=32,
|
117 |
num_attention_heads=32,
|
118 |
num_key_value_heads=32,
|
119 |
hidden_act="silu",
|
|
|
|
|
120 |
max_position_embeddings=4096,
|
121 |
initializer_range=0.02,
|
122 |
+
layer_norm_eps=1.0e-5,
|
123 |
use_cache=True,
|
|
|
|
|
124 |
tie_word_embeddings=False,
|
125 |
+
rope_theta=10_000,
|
126 |
+
rope_scaling=None,
|
127 |
+
use_qkv_bias=False,
|
128 |
+
hidden_dropout=0.0,
|
129 |
+
attention_dropout=0.0,
|
130 |
+
partial_rotary_factor=0.25,
|
131 |
+
bos_token_id=0,
|
132 |
+
eos_token_id=0,
|
133 |
**kwargs,
|
134 |
):
|
135 |
self.vocab_size = vocab_size
|
136 |
self.max_position_embeddings = max_position_embeddings
|
137 |
+
|
138 |
self.hidden_size = hidden_size
|
139 |
+
self.intermediate_size = intermediate_size
|
140 |
self.num_hidden_layers = num_hidden_layers
|
141 |
self.num_attention_heads = num_attention_heads
|
142 |
self.num_key_value_heads = num_key_value_heads
|
143 |
self.hidden_act = hidden_act
|
144 |
+
|
|
|
145 |
self.initializer_range = initializer_range
|
146 |
+
self.layer_norm_eps = layer_norm_eps
|
147 |
self.use_cache = use_cache
|
148 |
+
self.rope_theta = rope_theta
|
149 |
+
self.rope_scaling = rope_scaling
|
150 |
+
self.use_qkv_bias = use_qkv_bias
|
151 |
+
self.hidden_dropout = hidden_dropout
|
152 |
self.attention_dropout = attention_dropout
|
153 |
+
self.partial_rotary_factor = partial_rotary_factor
|
154 |
+
self._rope_scaling_validation()
|
155 |
+
|
156 |
super().__init__(
|
157 |
bos_token_id=bos_token_id,
|
158 |
eos_token_id=eos_token_id,
|
159 |
tie_word_embeddings=tie_word_embeddings,
|
160 |
**kwargs,
|
161 |
)
|
162 |
+
|
163 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
164 |
+
def _rope_scaling_validation(self):
|
165 |
+
"""
|
166 |
+
Validate the `rope_scaling` configuration.
|
167 |
+
"""
|
168 |
+
if self.rope_scaling is None:
|
169 |
+
return
|
170 |
+
|
171 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
172 |
+
raise ValueError(
|
173 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
174 |
+
f"got {self.rope_scaling}"
|
175 |
+
)
|
176 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
177 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
178 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
179 |
+
raise ValueError(
|
180 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
181 |
+
)
|
182 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
183 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
generation_config.json
CHANGED
@@ -2,5 +2,5 @@
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 0,
|
4 |
"eos_token_id": 0,
|
5 |
-
"transformers_version": "4.
|
6 |
}
|
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 0,
|
4 |
"eos_token_id": 0,
|
5 |
+
"transformers_version": "4.38.0"
|
6 |
}
|
modeling_stablelm_epoch.py → modeling_stablelm.py
RENAMED
@@ -1,5 +1,10 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright
|
|
|
|
|
|
|
|
|
|
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
@@ -12,48 +17,48 @@
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
-
|
16 |
-
# This code is based off the following work:
|
17 |
-
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
18 |
-
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py
|
19 |
-
""" PyTorch StableLM Epoch model. """
|
20 |
-
from typing import Optional, Tuple, Union
|
21 |
import math
|
22 |
-
import
|
23 |
|
24 |
import torch
|
25 |
import torch.nn.functional as F
|
26 |
import torch.utils.checkpoint
|
27 |
from torch import nn
|
28 |
-
from torch.nn import CrossEntropyLoss
|
29 |
|
30 |
-
from transformers.
|
31 |
-
from transformers.
|
32 |
-
|
33 |
-
|
34 |
-
)
|
35 |
from transformers.modeling_utils import PreTrainedModel
|
36 |
-
from transformers.utils import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
from .configuration_stablelm_epoch import StableLMEpochConfig
|
39 |
|
40 |
-
|
41 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
42 |
-
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
43 |
-
except:
|
44 |
-
flash_attn_func, flash_attn_varlen_func = None, None
|
45 |
-
index_first_axis, pad_input, unpad_input = None, None, None
|
46 |
|
47 |
|
48 |
logger = logging.get_logger(__name__)
|
49 |
|
|
|
|
|
50 |
|
51 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
52 |
def _get_unpad_data(attention_mask):
|
53 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
54 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
55 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
56 |
-
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.
|
57 |
return (
|
58 |
indices,
|
59 |
cu_seqlens,
|
@@ -61,113 +66,144 @@ def _get_unpad_data(attention_mask):
|
|
61 |
)
|
62 |
|
63 |
|
64 |
-
# Copied from transformers.models.
|
65 |
-
|
66 |
-
|
67 |
-
dtype: torch.dtype,
|
68 |
-
device: torch.device,
|
69 |
-
past_key_values_length: int = 0,
|
70 |
-
):
|
71 |
-
"""Make causal mask used for bi-directional self-attention."""
|
72 |
-
batch_size, tgt_len = input_ids_shape
|
73 |
-
mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device)
|
74 |
-
mask_cond = torch.arange(mask.size(-1), device=device)
|
75 |
-
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
76 |
-
mask = mask.to(dtype)
|
77 |
-
if past_key_values_length > 0:
|
78 |
-
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
79 |
-
return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length)
|
80 |
-
|
81 |
-
|
82 |
-
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
83 |
-
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
84 |
-
"""Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`."""
|
85 |
-
batch_size, src_len = mask.size()
|
86 |
-
tgt_len = tgt_len if tgt_len is not None else src_len
|
87 |
-
|
88 |
-
expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype)
|
89 |
-
inverted_mask = 1.0 - expanded_mask
|
90 |
-
|
91 |
-
return inverted_mask.masked_fill(
|
92 |
-
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
93 |
-
)
|
94 |
-
|
95 |
-
|
96 |
-
class RotaryEmbedding(nn.Module):
|
97 |
-
def __init__(
|
98 |
-
self,
|
99 |
-
dim: int,
|
100 |
-
max_position_embeddings: int,
|
101 |
-
base: int = 10_000,
|
102 |
-
device: Optional[torch.device] = None,
|
103 |
-
):
|
104 |
super().__init__()
|
105 |
|
106 |
self.dim = dim
|
107 |
self.max_position_embeddings = max_position_embeddings
|
108 |
self.base = base
|
109 |
-
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2,
|
110 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
111 |
|
112 |
# Build here to make `torch.jit.trace` work.
|
113 |
self._set_cos_sin_cache(
|
114 |
-
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
115 |
)
|
116 |
|
117 |
-
def _set_cos_sin_cache(self, seq_len
|
118 |
self.max_seq_len_cached = seq_len
|
119 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.
|
120 |
|
121 |
-
# Don't do einsum, it converts fp32 to fp16 under AMP
|
122 |
-
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
123 |
freqs = torch.outer(t, self.inv_freq)
|
124 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
125 |
emb = torch.cat((freqs, freqs), dim=-1)
|
126 |
-
self.register_buffer("cos_cached", emb.cos()
|
127 |
-
self.register_buffer("sin_cached", emb.sin()
|
128 |
|
129 |
-
def forward(self, x
|
130 |
-
# x: [
|
131 |
if seq_len > self.max_seq_len_cached:
|
132 |
-
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=
|
|
|
133 |
return (
|
134 |
-
self.cos_cached[
|
135 |
-
self.sin_cached[
|
136 |
)
|
137 |
|
138 |
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
"""Rotates half the hidden dims of the input."""
|
141 |
-
x1
|
|
|
142 |
return torch.cat((-x2, x1), dim=-1)
|
143 |
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
q_embed = (q * cos) + (rotate_half(q) * sin)
|
152 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
153 |
return q_embed, k_embed
|
154 |
|
155 |
|
156 |
-
|
157 |
-
|
|
|
158 |
super().__init__()
|
159 |
self.config = config
|
160 |
self.hidden_size = config.hidden_size
|
161 |
self.intermediate_size = config.intermediate_size
|
162 |
-
self.gate_proj = nn.Linear(
|
163 |
-
self.up_proj = nn.Linear(
|
164 |
-
self.down_proj = nn.Linear(
|
165 |
-
self.act_fn =
|
166 |
|
167 |
-
def forward(self, x
|
168 |
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
169 |
|
170 |
|
|
|
171 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
172 |
"""
|
173 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
@@ -180,47 +216,79 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
180 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
181 |
|
182 |
|
183 |
-
class
|
184 |
-
|
|
|
|
|
185 |
super().__init__()
|
186 |
self.config = config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
self.hidden_size = config.hidden_size
|
188 |
self.num_heads = config.num_attention_heads
|
189 |
self.head_dim = self.hidden_size // self.num_heads
|
190 |
self.num_key_value_heads = config.num_key_value_heads
|
191 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
192 |
self.max_position_embeddings = config.max_position_embeddings
|
|
|
|
|
193 |
self.is_causal = True
|
194 |
-
self.attention_dropout = config.attention_dropout
|
195 |
|
196 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
197 |
raise ValueError(
|
198 |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
199 |
f" and `num_heads`: {self.num_heads})."
|
200 |
)
|
201 |
-
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=
|
202 |
-
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=
|
203 |
-
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=
|
204 |
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
205 |
|
|
|
206 |
self._init_rope()
|
207 |
|
|
|
208 |
def _init_rope(self):
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
def forward(
|
217 |
self,
|
218 |
-
hidden_states: torch.
|
219 |
-
attention_mask: torch.
|
220 |
-
position_ids: torch.LongTensor,
|
221 |
-
past_key_value: Optional[
|
222 |
-
output_attentions:
|
223 |
-
use_cache:
|
224 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
225 |
bsz, q_len, _ = hidden_states.size()
|
226 |
|
@@ -232,27 +300,37 @@ class Attention(nn.Module):
|
|
232 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
233 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
234 |
|
235 |
-
query_rot = query_states[..., : self.rotary_ndims]
|
236 |
-
query_pass = query_states[..., self.rotary_ndims :]
|
237 |
-
key_rot = key_states[..., : self.rotary_ndims]
|
238 |
-
key_pass = key_states[..., self.rotary_ndims :]
|
239 |
-
|
240 |
kv_seq_len = key_states.shape[-2]
|
241 |
if past_key_value is not None:
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
244 |
-
query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
245 |
|
246 |
-
#
|
247 |
-
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
value_states = torch.cat((past_key_value[1], value_states), dim=2)
|
254 |
|
255 |
-
past_key_value
|
|
|
|
|
|
|
256 |
|
257 |
# Repeat k/v heads if n_kv_heads < n_heads
|
258 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
@@ -273,9 +351,10 @@ class Attention(nn.Module):
|
|
273 |
)
|
274 |
attn_weights = attn_weights + attention_mask
|
275 |
|
276 |
-
#
|
277 |
-
attn_weights = nn.functional.softmax(attn_weights,
|
278 |
-
attn_weights =
|
|
|
279 |
attn_output = torch.matmul(attn_weights, value_states)
|
280 |
|
281 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
@@ -284,11 +363,9 @@ class Attention(nn.Module):
|
|
284 |
f" {attn_output.size()}"
|
285 |
)
|
286 |
|
287 |
-
# Merge heads
|
288 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
289 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
290 |
|
291 |
-
# Final linear projection
|
292 |
attn_output = self.o_proj(attn_output)
|
293 |
|
294 |
if not output_attentions:
|
@@ -297,11 +374,110 @@ class Attention(nn.Module):
|
|
297 |
return attn_output, attn_weights, past_key_value
|
298 |
|
299 |
|
300 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
"""
|
302 |
-
|
|
|
|
|
303 |
"""
|
304 |
|
|
|
305 |
def __init__(self, *args, **kwargs):
|
306 |
super().__init__(*args, **kwargs)
|
307 |
|
@@ -320,14 +496,7 @@ class FlashAttention2(Attention):
|
|
320 |
use_cache: bool = False,
|
321 |
**kwargs,
|
322 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
323 |
-
#
|
324 |
-
if "padding_mask" in kwargs:
|
325 |
-
warnings.warn(
|
326 |
-
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
327 |
-
)
|
328 |
-
|
329 |
-
# overwrite attention_mask with padding_mask
|
330 |
-
attention_mask = kwargs.pop("padding_mask")
|
331 |
|
332 |
output_attentions = False
|
333 |
|
@@ -344,27 +513,35 @@ class FlashAttention2(Attention):
|
|
344 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
345 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
346 |
|
347 |
-
query_rot = query_states[..., : self.rotary_ndims]
|
348 |
-
query_pass = query_states[..., self.rotary_ndims :]
|
349 |
-
key_rot = key_states[..., : self.rotary_ndims]
|
350 |
-
key_pass = key_states[..., self.rotary_ndims :]
|
351 |
-
|
352 |
kv_seq_len = key_states.shape[-2]
|
353 |
if past_key_value is not None:
|
354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
356 |
-
query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
357 |
|
358 |
-
#
|
359 |
-
|
360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
value_states = torch.cat((past_key_value[1], value_states), dim=2)
|
366 |
|
367 |
-
past_key_value
|
|
|
|
|
368 |
|
369 |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
370 |
# to be able to avoid many of these transpose/reshape/view.
|
@@ -375,8 +552,14 @@ class FlashAttention2(Attention):
|
|
375 |
dropout_rate = self.attention_dropout if self.training else 0.0
|
376 |
|
377 |
attn_output = self._flash_attention_forward(
|
378 |
-
query_states,
|
|
|
|
|
|
|
|
|
|
|
379 |
)
|
|
|
380 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
381 |
attn_output = self.o_proj(attn_output)
|
382 |
|
@@ -385,6 +568,7 @@ class FlashAttention2(Attention):
|
|
385 |
|
386 |
return attn_output, attn_weights, past_key_value
|
387 |
|
|
|
388 |
def _flash_attention_forward(
|
389 |
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
390 |
):
|
@@ -410,7 +594,7 @@ class FlashAttention2(Attention):
|
|
410 |
if not self._flash_attn_uses_top_left_mask:
|
411 |
causal = self.is_causal
|
412 |
else:
|
413 |
-
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in
|
414 |
causal = self.is_causal and query_length != 1
|
415 |
|
416 |
# Contains at least one padding token in the sequence
|
@@ -444,6 +628,7 @@ class FlashAttention2(Attention):
|
|
444 |
|
445 |
return attn_output
|
446 |
|
|
|
447 |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
448 |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
449 |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
@@ -484,28 +669,51 @@ class FlashAttention2(Attention):
|
|
484 |
|
485 |
|
486 |
ATTENTION_CLASSES = {
|
487 |
-
"eager":
|
488 |
-
"
|
|
|
489 |
}
|
490 |
|
491 |
|
492 |
-
class
|
493 |
-
def __init__(self, config:
|
494 |
super().__init__()
|
495 |
-
self.
|
496 |
-
self.
|
497 |
-
self.
|
498 |
-
self.
|
|
|
|
|
499 |
|
500 |
def forward(
|
501 |
self,
|
502 |
-
hidden_states:
|
503 |
-
attention_mask: Optional[torch.
|
504 |
position_ids: Optional[torch.LongTensor] = None,
|
505 |
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
506 |
output_attentions: Optional[bool] = False,
|
507 |
use_cache: Optional[bool] = False,
|
508 |
-
) ->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
509 |
residual = hidden_states
|
510 |
|
511 |
hidden_states = self.input_layernorm(hidden_states)
|
@@ -525,7 +733,9 @@ class DecoderLayer(nn.Module):
|
|
525 |
residual = hidden_states
|
526 |
hidden_states = self.post_attention_layernorm(hidden_states)
|
527 |
hidden_states = self.mlp(hidden_states)
|
528 |
-
|
|
|
|
|
529 |
|
530 |
outputs = (hidden_states,)
|
531 |
|
@@ -538,45 +748,143 @@ class DecoderLayer(nn.Module):
|
|
538 |
return outputs
|
539 |
|
540 |
|
541 |
-
|
542 |
-
|
543 |
-
for downloading
|
544 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
545 |
|
546 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
547 |
base_model_prefix = "model"
|
548 |
supports_gradient_checkpointing = True
|
549 |
-
_no_split_modules = ["
|
550 |
_skip_keys_device_placement = "past_key_values"
|
551 |
_supports_flash_attn_2 = True
|
|
|
|
|
552 |
|
553 |
-
def _init_weights(self, module
|
554 |
-
|
555 |
if isinstance(module, nn.Linear):
|
556 |
-
module.weight.data.normal_(mean=0.0, std=
|
557 |
if module.bias is not None:
|
558 |
module.bias.data.zero_()
|
559 |
elif isinstance(module, nn.Embedding):
|
560 |
-
module.weight.data.normal_(mean=0.0, std=
|
561 |
if module.padding_idx is not None:
|
562 |
module.weight.data[module.padding_idx].zero_()
|
563 |
-
elif isinstance(module, nn.LayerNorm):
|
564 |
-
module.bias.data.zero_()
|
565 |
-
module.weight.data.fill_(1.0)
|
566 |
|
567 |
-
def _set_gradient_checkpointing(self, module: nn.Module, value=False):
|
568 |
-
if isinstance(module, StableLMEpochModel):
|
569 |
-
module.gradient_checkpointing = value
|
570 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
571 |
|
572 |
-
|
573 |
-
def __init__(self, config: StableLMEpochConfig):
|
574 |
super().__init__(config)
|
575 |
-
self.
|
576 |
-
self.
|
577 |
-
|
|
|
|
|
|
|
|
|
|
|
578 |
|
579 |
-
self.
|
580 |
self.gradient_checkpointing = False
|
581 |
# Initialize weights and apply final processing
|
582 |
self.post_init()
|
@@ -584,43 +892,16 @@ class StableLMEpochModel(StableLMEpochPreTrainedModel):
|
|
584 |
def get_input_embeddings(self):
|
585 |
return self.embed_tokens
|
586 |
|
587 |
-
def set_input_embeddings(self, value
|
588 |
self.embed_tokens = value
|
589 |
|
590 |
-
|
591 |
-
def _prepare_decoder_attention_mask(
|
592 |
-
self,
|
593 |
-
attention_mask: torch.Tensor,
|
594 |
-
input_shape: torch.Size,
|
595 |
-
inputs_embeds: torch.Tensor,
|
596 |
-
past_key_values_length: int,
|
597 |
-
):
|
598 |
-
# Create causal mask
|
599 |
-
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
600 |
-
combined_attention_mask = None
|
601 |
-
if input_shape[-1] > 1:
|
602 |
-
combined_attention_mask = _make_causal_mask(
|
603 |
-
input_shape,
|
604 |
-
inputs_embeds.dtype,
|
605 |
-
device=inputs_embeds.device,
|
606 |
-
past_key_values_length=past_key_values_length,
|
607 |
-
)
|
608 |
-
|
609 |
-
if attention_mask is not None:
|
610 |
-
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
611 |
-
expanded_attn_mask = _expand_mask(
|
612 |
-
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
613 |
-
).to(inputs_embeds.device)
|
614 |
-
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
615 |
-
|
616 |
-
return combined_attention_mask
|
617 |
-
|
618 |
def forward(
|
619 |
self,
|
620 |
-
input_ids:
|
621 |
-
attention_mask: Optional[torch.
|
622 |
position_ids: Optional[torch.LongTensor] = None,
|
623 |
-
past_key_values: Optional[
|
624 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
625 |
use_cache: Optional[bool] = None,
|
626 |
output_attentions: Optional[bool] = None,
|
@@ -628,103 +909,90 @@ class StableLMEpochModel(StableLMEpochPreTrainedModel):
|
|
628 |
return_dict: Optional[bool] = None,
|
629 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
630 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
631 |
-
output_hidden_states =
|
|
|
|
|
632 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
633 |
|
634 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
635 |
|
636 |
-
#
|
637 |
if input_ids is not None and inputs_embeds is not None:
|
638 |
-
raise ValueError(
|
639 |
-
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
640 |
-
)
|
641 |
elif input_ids is not None:
|
642 |
batch_size, seq_length = input_ids.shape
|
643 |
elif inputs_embeds is not None:
|
644 |
batch_size, seq_length, _ = inputs_embeds.shape
|
645 |
else:
|
646 |
-
raise ValueError(
|
647 |
-
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
648 |
-
)
|
649 |
|
650 |
seq_length_with_past = seq_length
|
651 |
past_key_values_length = 0
|
652 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
653 |
if position_ids is None:
|
654 |
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
655 |
position_ids = torch.arange(
|
656 |
-
past_key_values_length,
|
657 |
-
seq_length + past_key_values_length,
|
658 |
-
dtype=torch.long,
|
659 |
-
device=device,
|
660 |
)
|
661 |
-
position_ids = position_ids.unsqueeze(0)
|
662 |
-
else:
|
663 |
-
position_ids = position_ids.view(-1, seq_length).long()
|
664 |
|
665 |
if inputs_embeds is None:
|
666 |
inputs_embeds = self.embed_tokens(input_ids)
|
667 |
-
#
|
668 |
-
if self.
|
669 |
# 2d mask is passed through the layers
|
670 |
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
|
|
|
|
|
|
|
|
|
|
671 |
else:
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
dtype=torch.bool,
|
676 |
-
device=inputs_embeds.device,
|
677 |
-
)
|
678 |
-
attention_mask = self._prepare_decoder_attention_mask(
|
679 |
-
attention_mask,
|
680 |
-
(batch_size, seq_length),
|
681 |
-
inputs_embeds,
|
682 |
-
past_key_values_length,
|
683 |
)
|
684 |
|
685 |
hidden_states = inputs_embeds
|
686 |
|
687 |
-
|
688 |
-
if use_cache:
|
689 |
-
logger.warning(
|
690 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
691 |
-
)
|
692 |
-
use_cache = False
|
693 |
-
|
694 |
-
# Decoder layers
|
695 |
all_hidden_states = () if output_hidden_states else None
|
696 |
all_self_attns = () if output_attentions else None
|
697 |
-
next_decoder_cache =
|
698 |
|
699 |
-
for
|
700 |
if output_hidden_states:
|
701 |
all_hidden_states += (hidden_states,)
|
702 |
|
703 |
-
past_key_value = (
|
704 |
-
past_key_values[idx] if past_key_values is not None else None
|
705 |
-
)
|
706 |
-
|
707 |
if self.gradient_checkpointing and self.training:
|
708 |
-
|
709 |
-
|
710 |
-
def custom_forward(*inputs):
|
711 |
-
# None for past_key_value
|
712 |
-
return module(*inputs, past_key_value, output_attentions)
|
713 |
-
|
714 |
-
return custom_forward
|
715 |
-
|
716 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
717 |
-
create_custom_forward(decoder_layer),
|
718 |
hidden_states,
|
719 |
attention_mask,
|
720 |
position_ids,
|
|
|
|
|
721 |
)
|
722 |
else:
|
723 |
layer_outputs = decoder_layer(
|
724 |
hidden_states,
|
725 |
attention_mask=attention_mask,
|
726 |
position_ids=position_ids,
|
727 |
-
past_key_value=
|
728 |
output_attentions=output_attentions,
|
729 |
use_cache=use_cache,
|
730 |
)
|
@@ -732,24 +1000,23 @@ class StableLMEpochModel(StableLMEpochPreTrainedModel):
|
|
732 |
hidden_states = layer_outputs[0]
|
733 |
|
734 |
if use_cache:
|
735 |
-
next_decoder_cache
|
736 |
|
737 |
if output_attentions:
|
738 |
all_self_attns += (layer_outputs[1],)
|
739 |
|
740 |
hidden_states = self.norm(hidden_states)
|
741 |
|
742 |
-
#
|
743 |
if output_hidden_states:
|
744 |
all_hidden_states += (hidden_states,)
|
745 |
|
746 |
-
next_cache =
|
|
|
|
|
|
|
747 |
if not return_dict:
|
748 |
-
return tuple(
|
749 |
-
v
|
750 |
-
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
751 |
-
if v is not None
|
752 |
-
)
|
753 |
return BaseModelOutputWithPast(
|
754 |
last_hidden_state=hidden_states,
|
755 |
past_key_values=next_cache,
|
@@ -758,42 +1025,53 @@ class StableLMEpochModel(StableLMEpochPreTrainedModel):
|
|
758 |
)
|
759 |
|
760 |
|
761 |
-
|
|
|
762 |
_tied_weights_keys = ["lm_head.weight"]
|
763 |
|
764 |
-
|
|
|
765 |
super().__init__(config)
|
766 |
-
|
767 |
-
self.
|
768 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
769 |
|
770 |
# Initialize weights and apply final processing
|
771 |
self.post_init()
|
772 |
|
|
|
773 |
def get_input_embeddings(self):
|
774 |
return self.model.embed_tokens
|
775 |
|
|
|
776 |
def set_input_embeddings(self, value):
|
777 |
self.model.embed_tokens = value
|
778 |
|
|
|
779 |
def get_output_embeddings(self):
|
780 |
return self.lm_head
|
781 |
|
782 |
-
|
|
|
783 |
self.lm_head = new_embeddings
|
784 |
|
785 |
-
|
786 |
-
return self.model
|
787 |
-
|
788 |
def set_decoder(self, decoder):
|
789 |
self.model = decoder
|
790 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
791 |
def forward(
|
792 |
self,
|
793 |
-
input_ids:
|
794 |
-
attention_mask: Optional[torch.
|
795 |
position_ids: Optional[torch.LongTensor] = None,
|
796 |
-
past_key_values: Optional[
|
797 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
798 |
labels: Optional[torch.LongTensor] = None,
|
799 |
use_cache: Optional[bool] = None,
|
@@ -801,23 +1079,40 @@ class StableLMEpochForCausalLM(StableLMEpochPreTrainedModel):
|
|
801 |
output_hidden_states: Optional[bool] = None,
|
802 |
return_dict: Optional[bool] = None,
|
803 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
809 |
output_hidden_states = (
|
810 |
-
output_hidden_states
|
811 |
-
if output_hidden_states is not None
|
812 |
-
else self.config.output_hidden_states
|
813 |
-
)
|
814 |
-
return_dict = (
|
815 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
816 |
)
|
|
|
817 |
|
818 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
819 |
outputs = self.model(
|
820 |
-
input_ids,
|
821 |
attention_mask=attention_mask,
|
822 |
position_ids=position_ids,
|
823 |
past_key_values=past_key_values,
|
@@ -829,7 +1124,7 @@ class StableLMEpochForCausalLM(StableLMEpochPreTrainedModel):
|
|
829 |
)
|
830 |
|
831 |
hidden_states = outputs[0]
|
832 |
-
logits = self.lm_head(hidden_states)
|
833 |
|
834 |
loss = None
|
835 |
if labels is not None:
|
@@ -857,35 +1152,46 @@ class StableLMEpochForCausalLM(StableLMEpochPreTrainedModel):
|
|
857 |
)
|
858 |
|
859 |
def prepare_inputs_for_generation(
|
860 |
-
self,
|
861 |
-
input_ids,
|
862 |
-
past_key_values: Optional[torch.Tensor] = None,
|
863 |
-
attention_mask: Optional[torch.Tensor] = None,
|
864 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
865 |
-
**kwargs,
|
866 |
):
|
867 |
-
# Trim decoder_input_ids if past is used
|
868 |
if past_key_values is not None:
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
remove_prefix_length = past_length
|
874 |
else:
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
879 |
|
880 |
position_ids = kwargs.get("position_ids", None)
|
881 |
if attention_mask is not None and position_ids is None:
|
882 |
-
#
|
883 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
884 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
885 |
if past_key_values:
|
886 |
-
position_ids = position_ids[:, -1]
|
887 |
|
888 |
-
#
|
889 |
if inputs_embeds is not None and past_key_values is None:
|
890 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
891 |
else:
|
@@ -893,10 +1199,10 @@ class StableLMEpochForCausalLM(StableLMEpochPreTrainedModel):
|
|
893 |
|
894 |
model_inputs.update(
|
895 |
{
|
896 |
-
"
|
897 |
"past_key_values": past_key_values,
|
898 |
"use_cache": kwargs.get("use_cache"),
|
899 |
-
"
|
900 |
}
|
901 |
)
|
902 |
return model_inputs
|
@@ -906,13 +1212,130 @@ class StableLMEpochForCausalLM(StableLMEpochPreTrainedModel):
|
|
906 |
reordered_past = ()
|
907 |
for layer_past in past_key_values:
|
908 |
reordered_past += (
|
909 |
-
tuple(
|
910 |
-
past_state.index_select(0, beam_idx.to(past_state.device))
|
911 |
-
for past_state in layer_past
|
912 |
-
),
|
913 |
)
|
914 |
return reordered_past
|
915 |
|
916 |
|
917 |
-
|
918 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
#
|
9 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
# you may not use this file except in compliance with the License.
|
|
|
17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
20 |
+
""" PyTorch StableLM model."""
|
|
|
|
|
|
|
|
|
|
|
21 |
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
|
24 |
import torch
|
25 |
import torch.nn.functional as F
|
26 |
import torch.utils.checkpoint
|
27 |
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.cache_utils import Cache, DynamicCache
|
32 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
33 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
|
|
34 |
from transformers.modeling_utils import PreTrainedModel
|
35 |
+
from transformers.utils import (
|
36 |
+
add_start_docstrings,
|
37 |
+
add_start_docstrings_to_model_forward,
|
38 |
+
is_flash_attn_2_available,
|
39 |
+
is_flash_attn_greater_or_equal_2_10,
|
40 |
+
logging,
|
41 |
+
replace_return_docstrings,
|
42 |
+
)
|
43 |
+
from .configuration_stablelm import StableLmConfig
|
44 |
|
|
|
45 |
|
46 |
+
if is_flash_attn_2_available():
|
47 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
48 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
|
|
|
|
|
|
49 |
|
50 |
|
51 |
logger = logging.get_logger(__name__)
|
52 |
|
53 |
+
_CONFIG_FOR_DOC = "StableLmConfig"
|
54 |
+
|
55 |
|
56 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
57 |
def _get_unpad_data(attention_mask):
|
58 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
59 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
60 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
61 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
62 |
return (
|
63 |
indices,
|
64 |
cu_seqlens,
|
|
|
66 |
)
|
67 |
|
68 |
|
69 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->StableLm
|
70 |
+
class StableLmRotaryEmbedding(nn.Module):
|
71 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
super().__init__()
|
73 |
|
74 |
self.dim = dim
|
75 |
self.max_position_embeddings = max_position_embeddings
|
76 |
self.base = base
|
77 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
78 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
79 |
|
80 |
# Build here to make `torch.jit.trace` work.
|
81 |
self._set_cos_sin_cache(
|
82 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
83 |
)
|
84 |
|
85 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
86 |
self.max_seq_len_cached = seq_len
|
87 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
88 |
|
|
|
|
|
89 |
freqs = torch.outer(t, self.inv_freq)
|
90 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
91 |
emb = torch.cat((freqs, freqs), dim=-1)
|
92 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
93 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
94 |
|
95 |
+
def forward(self, x, seq_len=None):
|
96 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
97 |
if seq_len > self.max_seq_len_cached:
|
98 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
99 |
+
|
100 |
return (
|
101 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
102 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
103 |
)
|
104 |
|
105 |
|
106 |
+
# Copied from transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding with Falcon->StableLm
|
107 |
+
class StableLmLinearScalingRotaryEmbedding(StableLmRotaryEmbedding):
|
108 |
+
"""StableLmRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
109 |
+
|
110 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
111 |
+
self.scaling_factor = scaling_factor
|
112 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
113 |
+
|
114 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
115 |
+
self.max_seq_len_cached = seq_len
|
116 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
117 |
+
t = t / self.scaling_factor
|
118 |
+
|
119 |
+
freqs = torch.outer(t, self.inv_freq)
|
120 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
121 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
122 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
123 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
124 |
+
|
125 |
+
|
126 |
+
# Copied from transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding with Falcon->StableLm
|
127 |
+
class StableLmDynamicNTKScalingRotaryEmbedding(StableLmRotaryEmbedding):
|
128 |
+
"""StableLmRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
129 |
+
|
130 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
131 |
+
self.scaling_factor = scaling_factor
|
132 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
133 |
+
|
134 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
135 |
+
self.max_seq_len_cached = seq_len
|
136 |
+
|
137 |
+
if seq_len > self.max_position_embeddings:
|
138 |
+
base = self.base * (
|
139 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
140 |
+
) ** (self.dim / (self.dim - 2))
|
141 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
142 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
143 |
+
|
144 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
145 |
+
|
146 |
+
freqs = torch.outer(t, self.inv_freq)
|
147 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
148 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
149 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
150 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
151 |
+
|
152 |
+
|
153 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
154 |
+
def rotate_half(x):
|
155 |
"""Rotates half the hidden dims of the input."""
|
156 |
+
x1 = x[..., : x.shape[-1] // 2]
|
157 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
158 |
return torch.cat((-x2, x1), dim=-1)
|
159 |
|
160 |
|
161 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
162 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
163 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
164 |
+
|
165 |
+
Args:
|
166 |
+
q (`torch.Tensor`): The query tensor.
|
167 |
+
k (`torch.Tensor`): The key tensor.
|
168 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
169 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
170 |
+
position_ids (`torch.Tensor`):
|
171 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
172 |
+
used to pass offsetted position ids when working with a KV-cache.
|
173 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
174 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
175 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
176 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
177 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
178 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
179 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
180 |
+
Returns:
|
181 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
182 |
+
"""
|
183 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
184 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
185 |
q_embed = (q * cos) + (rotate_half(q) * sin)
|
186 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
187 |
return q_embed, k_embed
|
188 |
|
189 |
|
190 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->StableLm
|
191 |
+
class StableLmMLP(nn.Module):
|
192 |
+
def __init__(self, config):
|
193 |
super().__init__()
|
194 |
self.config = config
|
195 |
self.hidden_size = config.hidden_size
|
196 |
self.intermediate_size = config.intermediate_size
|
197 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
198 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
199 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
200 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
201 |
|
202 |
+
def forward(self, x):
|
203 |
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
204 |
|
205 |
|
206 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
207 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
208 |
"""
|
209 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
|
216 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
217 |
|
218 |
|
219 |
+
class StableLmAttention(nn.Module):
|
220 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
221 |
+
|
222 |
+
def __init__(self, config: StableLmConfig, layer_idx: Optional[int] = None):
|
223 |
super().__init__()
|
224 |
self.config = config
|
225 |
+
self.layer_idx = layer_idx
|
226 |
+
if layer_idx is None:
|
227 |
+
logger.warning_once(
|
228 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
229 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
230 |
+
"when creating this class."
|
231 |
+
)
|
232 |
+
|
233 |
self.hidden_size = config.hidden_size
|
234 |
self.num_heads = config.num_attention_heads
|
235 |
self.head_dim = self.hidden_size // self.num_heads
|
236 |
self.num_key_value_heads = config.num_key_value_heads
|
237 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
238 |
self.max_position_embeddings = config.max_position_embeddings
|
239 |
+
self.rope_theta = config.rope_theta
|
240 |
+
self.partial_rotary_factor = config.partial_rotary_factor
|
241 |
self.is_causal = True
|
|
|
242 |
|
243 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
244 |
raise ValueError(
|
245 |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
246 |
f" and `num_heads`: {self.num_heads})."
|
247 |
)
|
248 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.use_qkv_bias)
|
249 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias)
|
250 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias)
|
251 |
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
252 |
|
253 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
254 |
self._init_rope()
|
255 |
|
256 |
+
# Copied from transformers.models.persimmon.modeling_persimmon.PersimmonAttention._init_rope with Persimmon->StableLm
|
257 |
def _init_rope(self):
|
258 |
+
if self.config.rope_scaling is None:
|
259 |
+
self.rotary_emb = StableLmRotaryEmbedding(
|
260 |
+
int(self.partial_rotary_factor * self.head_dim),
|
261 |
+
max_position_embeddings=self.max_position_embeddings,
|
262 |
+
base=self.rope_theta,
|
263 |
+
)
|
264 |
+
else:
|
265 |
+
scaling_type = self.config.rope_scaling["type"]
|
266 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
267 |
+
if scaling_type == "linear":
|
268 |
+
self.rotary_emb = StableLmLinearScalingRotaryEmbedding(
|
269 |
+
int(self.partial_rotary_factor * self.head_dim),
|
270 |
+
max_position_embeddings=self.max_position_embeddings,
|
271 |
+
scaling_factor=scaling_factor,
|
272 |
+
base=self.rope_theta,
|
273 |
+
)
|
274 |
+
elif scaling_type == "dynamic":
|
275 |
+
self.rotary_emb = StableLmDynamicNTKScalingRotaryEmbedding(
|
276 |
+
int(self.partial_rotary_factor * self.head_dim),
|
277 |
+
max_position_embeddings=self.max_position_embeddings,
|
278 |
+
scaling_factor=scaling_factor,
|
279 |
+
base=self.rope_theta,
|
280 |
+
)
|
281 |
+
else:
|
282 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
283 |
|
284 |
def forward(
|
285 |
self,
|
286 |
+
hidden_states: torch.Tensor,
|
287 |
+
attention_mask: Optional[torch.Tensor] = None,
|
288 |
+
position_ids: Optional[torch.LongTensor] = None,
|
289 |
+
past_key_value: Optional[Cache] = None,
|
290 |
+
output_attentions: bool = False,
|
291 |
+
use_cache: bool = False,
|
292 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
293 |
bsz, q_len, _ = hidden_states.size()
|
294 |
|
|
|
300 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
301 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
302 |
|
|
|
|
|
|
|
|
|
|
|
303 |
kv_seq_len = key_states.shape[-2]
|
304 |
if past_key_value is not None:
|
305 |
+
if self.layer_idx is None:
|
306 |
+
raise ValueError(
|
307 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
308 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
309 |
+
"with a layer index."
|
310 |
+
)
|
311 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
312 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
|
313 |
|
314 |
+
# Partial rotary embedding
|
315 |
+
query_rot, query_pass = (
|
316 |
+
query_states[..., : self.rotary_emb.dim],
|
317 |
+
query_states[..., self.rotary_emb.dim :],
|
318 |
+
)
|
319 |
+
key_rot, key_pass = (
|
320 |
+
key_states[..., : self.rotary_emb.dim],
|
321 |
+
key_states[..., self.rotary_emb.dim :],
|
322 |
+
)
|
323 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
324 |
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
325 |
|
326 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
327 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
328 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
|
|
329 |
|
330 |
+
if past_key_value is not None:
|
331 |
+
# Specific to RoPE models with partial rotation
|
332 |
+
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
|
333 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
334 |
|
335 |
# Repeat k/v heads if n_kv_heads < n_heads
|
336 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
|
351 |
)
|
352 |
attn_weights = attn_weights + attention_mask
|
353 |
|
354 |
+
# upcast attention to fp32
|
355 |
+
attn_weights = nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query_states.dtype)
|
356 |
+
attn_weights = self.attention_dropout(attn_weights)
|
357 |
+
|
358 |
attn_output = torch.matmul(attn_weights, value_states)
|
359 |
|
360 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
|
363 |
f" {attn_output.size()}"
|
364 |
)
|
365 |
|
|
|
366 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
367 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
368 |
|
|
|
369 |
attn_output = self.o_proj(attn_output)
|
370 |
|
371 |
if not output_attentions:
|
|
|
374 |
return attn_output, attn_weights, past_key_value
|
375 |
|
376 |
|
377 |
+
class StableLmSdpaAttention(StableLmAttention):
|
378 |
+
def forward(
|
379 |
+
self,
|
380 |
+
hidden_states: torch.Tensor,
|
381 |
+
attention_mask: Optional[torch.Tensor] = None,
|
382 |
+
position_ids: Optional[torch.LongTensor] = None,
|
383 |
+
past_key_value: Optional[Cache] = None,
|
384 |
+
output_attentions: bool = False,
|
385 |
+
use_cache: bool = False,
|
386 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
387 |
+
if output_attentions:
|
388 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
389 |
+
logger.warning_once(
|
390 |
+
"StableLmModel is using StableLmSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
391 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
392 |
+
)
|
393 |
+
return super().forward(
|
394 |
+
hidden_states=hidden_states,
|
395 |
+
attention_mask=attention_mask,
|
396 |
+
position_ids=position_ids,
|
397 |
+
past_key_value=past_key_value,
|
398 |
+
output_attentions=output_attentions,
|
399 |
+
use_cache=use_cache,
|
400 |
+
)
|
401 |
+
|
402 |
+
bsz, q_len, _ = hidden_states.size()
|
403 |
+
|
404 |
+
query_states = self.q_proj(hidden_states)
|
405 |
+
key_states = self.k_proj(hidden_states)
|
406 |
+
value_states = self.v_proj(hidden_states)
|
407 |
+
|
408 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
409 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
410 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
411 |
+
|
412 |
+
kv_seq_len = key_states.shape[-2]
|
413 |
+
if past_key_value is not None:
|
414 |
+
if self.layer_idx is None:
|
415 |
+
raise ValueError(
|
416 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
417 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
418 |
+
"with a layer index."
|
419 |
+
)
|
420 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
421 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
422 |
+
|
423 |
+
# Partial rotary embedding
|
424 |
+
query_rot, query_pass = (
|
425 |
+
query_states[..., : self.rotary_emb.dim],
|
426 |
+
query_states[..., self.rotary_emb.dim :],
|
427 |
+
)
|
428 |
+
key_rot, key_pass = (
|
429 |
+
key_states[..., : self.rotary_emb.dim],
|
430 |
+
key_states[..., self.rotary_emb.dim :],
|
431 |
+
)
|
432 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
433 |
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
434 |
+
|
435 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
436 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
437 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
438 |
+
|
439 |
+
if past_key_value is not None:
|
440 |
+
# Specific to RoPE models with partial rotation
|
441 |
+
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
|
442 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
443 |
+
|
444 |
+
# Repeat k/v heads if n_kv_heads < n_heads
|
445 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
446 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
447 |
+
|
448 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
449 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
450 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
451 |
+
query_states = query_states.contiguous()
|
452 |
+
key_states = key_states.contiguous()
|
453 |
+
value_states = value_states.contiguous()
|
454 |
+
|
455 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
456 |
+
query_states,
|
457 |
+
key_states,
|
458 |
+
value_states,
|
459 |
+
attn_mask=attention_mask,
|
460 |
+
dropout_p=self.attention_dropout.p if self.training else 0.0,
|
461 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
462 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
463 |
+
)
|
464 |
+
|
465 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
466 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
467 |
+
|
468 |
+
attn_output = self.o_proj(attn_output)
|
469 |
+
|
470 |
+
return attn_output, None, past_key_value
|
471 |
+
|
472 |
+
|
473 |
+
class StableLmFlashAttention2(StableLmAttention):
|
474 |
"""
|
475 |
+
StableLM flash attention module. This module inherits from `StableLmAttention` as the weights of the module stays
|
476 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
477 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
478 |
"""
|
479 |
|
480 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
481 |
def __init__(self, *args, **kwargs):
|
482 |
super().__init__(*args, **kwargs)
|
483 |
|
|
|
496 |
use_cache: bool = False,
|
497 |
**kwargs,
|
498 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
499 |
+
# StableLmFlashAttention2 attention does not support output_attentions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
|
501 |
output_attentions = False
|
502 |
|
|
|
513 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
514 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
515 |
|
|
|
|
|
|
|
|
|
|
|
516 |
kv_seq_len = key_states.shape[-2]
|
517 |
if past_key_value is not None:
|
518 |
+
if self.layer_idx is None:
|
519 |
+
raise ValueError(
|
520 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
521 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
522 |
+
"with a layer index."
|
523 |
+
)
|
524 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
525 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
|
526 |
|
527 |
+
# Partial rotary embedding
|
528 |
+
query_rot, query_pass = (
|
529 |
+
query_states[..., : self.rotary_emb.dim],
|
530 |
+
query_states[..., self.rotary_emb.dim :],
|
531 |
+
)
|
532 |
+
key_rot, key_pass = (
|
533 |
+
key_states[..., : self.rotary_emb.dim],
|
534 |
+
key_states[..., self.rotary_emb.dim :],
|
535 |
+
)
|
536 |
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
537 |
|
538 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
539 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
540 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
|
|
541 |
|
542 |
+
if past_key_value is not None:
|
543 |
+
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
|
544 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
545 |
|
546 |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
547 |
# to be able to avoid many of these transpose/reshape/view.
|
|
|
552 |
dropout_rate = self.attention_dropout if self.training else 0.0
|
553 |
|
554 |
attn_output = self._flash_attention_forward(
|
555 |
+
query_states,
|
556 |
+
key_states,
|
557 |
+
value_states,
|
558 |
+
attention_mask,
|
559 |
+
q_len,
|
560 |
+
dropout=dropout_rate,
|
561 |
)
|
562 |
+
|
563 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
564 |
attn_output = self.o_proj(attn_output)
|
565 |
|
|
|
568 |
|
569 |
return attn_output, attn_weights, past_key_value
|
570 |
|
571 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
572 |
def _flash_attention_forward(
|
573 |
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
574 |
):
|
|
|
594 |
if not self._flash_attn_uses_top_left_mask:
|
595 |
causal = self.is_causal
|
596 |
else:
|
597 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
598 |
causal = self.is_causal and query_length != 1
|
599 |
|
600 |
# Contains at least one padding token in the sequence
|
|
|
628 |
|
629 |
return attn_output
|
630 |
|
631 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
632 |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
633 |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
634 |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
|
|
669 |
|
670 |
|
671 |
ATTENTION_CLASSES = {
|
672 |
+
"eager": StableLmAttention,
|
673 |
+
"sdpa": StableLmSdpaAttention,
|
674 |
+
"flash_attention_2": StableLmFlashAttention2,
|
675 |
}
|
676 |
|
677 |
|
678 |
+
class StableLmDecoderLayer(nn.Module):
|
679 |
+
def __init__(self, config: StableLmConfig, layer_idx: int):
|
680 |
super().__init__()
|
681 |
+
self.hidden_size = config.hidden_size
|
682 |
+
self.self_attn = ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
683 |
+
self.mlp = StableLmMLP(config)
|
684 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
685 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
686 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
687 |
|
688 |
def forward(
|
689 |
self,
|
690 |
+
hidden_states: torch.Tensor,
|
691 |
+
attention_mask: Optional[torch.Tensor] = None,
|
692 |
position_ids: Optional[torch.LongTensor] = None,
|
693 |
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
694 |
output_attentions: Optional[bool] = False,
|
695 |
use_cache: Optional[bool] = False,
|
696 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
697 |
+
"""
|
698 |
+
Args:
|
699 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
700 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
701 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
702 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
703 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
704 |
+
`[0, config.n_positions - 1]`.
|
705 |
+
|
706 |
+
[What are position IDs?](../glossary#position-ids)
|
707 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
|
708 |
+
cached past key and value projection states
|
709 |
+
output_attentions (`bool`, *optional*):
|
710 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
711 |
+
returned tensors for more detail.
|
712 |
+
use_cache (`bool`, *optional*):
|
713 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
714 |
+
(see `past_key_values`).
|
715 |
+
"""
|
716 |
+
|
717 |
residual = hidden_states
|
718 |
|
719 |
hidden_states = self.input_layernorm(hidden_states)
|
|
|
733 |
residual = hidden_states
|
734 |
hidden_states = self.post_attention_layernorm(hidden_states)
|
735 |
hidden_states = self.mlp(hidden_states)
|
736 |
+
|
737 |
+
hidden_states = self.dropout(hidden_states)
|
738 |
+
hidden_states = hidden_states + residual
|
739 |
|
740 |
outputs = (hidden_states,)
|
741 |
|
|
|
748 |
return outputs
|
749 |
|
750 |
|
751 |
+
STABLELM_START_DOCSTRING = r"""
|
752 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
753 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
754 |
+
etc.)
|
755 |
+
|
756 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
757 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
758 |
+
and behavior.
|
759 |
+
|
760 |
+
Parameters:
|
761 |
+
config ([`StableLmConfig`]):
|
762 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
763 |
+
load the weights associated with the model, only the configuration. Check out the
|
764 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
765 |
+
"""
|
766 |
|
767 |
+
|
768 |
+
@add_start_docstrings(
|
769 |
+
"The bare StableLm Model outputting raw hidden-states without any specific head on top.",
|
770 |
+
STABLELM_START_DOCSTRING,
|
771 |
+
)
|
772 |
+
class StableLmPreTrainedModel(PreTrainedModel):
|
773 |
+
config_class = StableLmConfig
|
774 |
base_model_prefix = "model"
|
775 |
supports_gradient_checkpointing = True
|
776 |
+
_no_split_modules = ["StableLmDecoderLayer"]
|
777 |
_skip_keys_device_placement = "past_key_values"
|
778 |
_supports_flash_attn_2 = True
|
779 |
+
_supports_cache_class = True
|
780 |
+
_supports_sdpa = True
|
781 |
|
782 |
+
def _init_weights(self, module):
|
783 |
+
std = self.config.initializer_range
|
784 |
if isinstance(module, nn.Linear):
|
785 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
786 |
if module.bias is not None:
|
787 |
module.bias.data.zero_()
|
788 |
elif isinstance(module, nn.Embedding):
|
789 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
790 |
if module.padding_idx is not None:
|
791 |
module.weight.data[module.padding_idx].zero_()
|
|
|
|
|
|
|
792 |
|
|
|
|
|
|
|
793 |
|
794 |
+
STABLELM_INPUTS_DOCSTRING = r"""
|
795 |
+
Args:
|
796 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
797 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
798 |
+
it.
|
799 |
+
|
800 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
801 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
802 |
+
|
803 |
+
[What are input IDs?](../glossary#input-ids)
|
804 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
805 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
806 |
+
|
807 |
+
- 1 for tokens that are **not masked**,
|
808 |
+
- 0 for tokens that are **masked**.
|
809 |
+
|
810 |
+
[What are attention masks?](../glossary#attention-mask)
|
811 |
+
|
812 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
813 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
814 |
+
|
815 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
816 |
+
`past_key_values`).
|
817 |
+
|
818 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
819 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
820 |
+
information on the default strategy.
|
821 |
+
|
822 |
+
- 1 indicates the head is **not masked**,
|
823 |
+
- 0 indicates the head is **masked**.
|
824 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
825 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
826 |
+
config.n_positions - 1]`.
|
827 |
+
|
828 |
+
[What are position IDs?](../glossary#position-ids)
|
829 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
830 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
831 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
832 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
833 |
+
|
834 |
+
Two formats are allowed:
|
835 |
+
- a [`~cache_utils.Cache`] instance;
|
836 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
837 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
838 |
+
cache format.
|
839 |
+
|
840 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
841 |
+
legacy cache format will be returned.
|
842 |
+
|
843 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
844 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
845 |
+
of shape `(batch_size, sequence_length)`.
|
846 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
847 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
848 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
849 |
+
model's internal embedding lookup matrix.
|
850 |
+
use_cache (`bool`, *optional*):
|
851 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
852 |
+
`past_key_values`).
|
853 |
+
output_attentions (`bool`, *optional*):
|
854 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
855 |
+
tensors for more detail.
|
856 |
+
output_hidden_states (`bool`, *optional*):
|
857 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
858 |
+
more detail.
|
859 |
+
return_dict (`bool`, *optional*):
|
860 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
861 |
+
"""
|
862 |
+
|
863 |
+
|
864 |
+
@add_start_docstrings(
|
865 |
+
"The bare StableLm Model outputting raw hidden-states without any specific head on top.",
|
866 |
+
STABLELM_START_DOCSTRING,
|
867 |
+
)
|
868 |
+
class StableLmModel(StableLmPreTrainedModel):
|
869 |
+
"""
|
870 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`StableLmDecoderLayer`]
|
871 |
+
|
872 |
+
Args:
|
873 |
+
config: StableLmConfig
|
874 |
+
"""
|
875 |
|
876 |
+
def __init__(self, config: StableLmConfig):
|
|
|
877 |
super().__init__(config)
|
878 |
+
self.padding_idx = config.pad_token_id
|
879 |
+
self.vocab_size = config.vocab_size
|
880 |
+
|
881 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
882 |
+
self.layers = nn.ModuleList(
|
883 |
+
[StableLmDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
884 |
+
)
|
885 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
886 |
|
887 |
+
self._attn_implementation = config._attn_implementation
|
888 |
self.gradient_checkpointing = False
|
889 |
# Initialize weights and apply final processing
|
890 |
self.post_init()
|
|
|
892 |
def get_input_embeddings(self):
|
893 |
return self.embed_tokens
|
894 |
|
895 |
+
def set_input_embeddings(self, value):
|
896 |
self.embed_tokens = value
|
897 |
|
898 |
+
@add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
899 |
def forward(
|
900 |
self,
|
901 |
+
input_ids: torch.LongTensor = None,
|
902 |
+
attention_mask: Optional[torch.Tensor] = None,
|
903 |
position_ids: Optional[torch.LongTensor] = None,
|
904 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
905 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
906 |
use_cache: Optional[bool] = None,
|
907 |
output_attentions: Optional[bool] = None,
|
|
|
909 |
return_dict: Optional[bool] = None,
|
910 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
911 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
912 |
+
output_hidden_states = (
|
913 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
914 |
+
)
|
915 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
916 |
|
917 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
918 |
|
919 |
+
# retrieve input_ids and inputs_embeds
|
920 |
if input_ids is not None and inputs_embeds is not None:
|
921 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
|
|
|
922 |
elif input_ids is not None:
|
923 |
batch_size, seq_length = input_ids.shape
|
924 |
elif inputs_embeds is not None:
|
925 |
batch_size, seq_length, _ = inputs_embeds.shape
|
926 |
else:
|
927 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
|
|
|
928 |
|
929 |
seq_length_with_past = seq_length
|
930 |
past_key_values_length = 0
|
931 |
|
932 |
+
if self.gradient_checkpointing and self.training:
|
933 |
+
if use_cache:
|
934 |
+
logger.warning_once(
|
935 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
936 |
+
)
|
937 |
+
use_cache = False
|
938 |
+
|
939 |
+
if use_cache:
|
940 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
941 |
+
if use_legacy_cache:
|
942 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
943 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
944 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
945 |
+
|
946 |
if position_ids is None:
|
947 |
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
948 |
position_ids = torch.arange(
|
949 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
|
|
|
|
|
|
950 |
)
|
951 |
+
position_ids = position_ids.unsqueeze(0)
|
|
|
|
|
952 |
|
953 |
if inputs_embeds is None:
|
954 |
inputs_embeds = self.embed_tokens(input_ids)
|
955 |
+
# embed positions
|
956 |
+
if self._attn_implementation == "flash_attention_2":
|
957 |
# 2d mask is passed through the layers
|
958 |
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
959 |
+
# for output_attentions case used fallback to eager attention realization
|
960 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
961 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
962 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
963 |
+
)
|
964 |
else:
|
965 |
+
# 4d mask is passed through the layers
|
966 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
967 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
968 |
)
|
969 |
|
970 |
hidden_states = inputs_embeds
|
971 |
|
972 |
+
# decoder layers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
973 |
all_hidden_states = () if output_hidden_states else None
|
974 |
all_self_attns = () if output_attentions else None
|
975 |
+
next_decoder_cache = None
|
976 |
|
977 |
+
for decoder_layer in self.layers:
|
978 |
if output_hidden_states:
|
979 |
all_hidden_states += (hidden_states,)
|
980 |
|
|
|
|
|
|
|
|
|
981 |
if self.gradient_checkpointing and self.training:
|
982 |
+
layer_outputs = self._gradient_checkpointing_func(
|
983 |
+
decoder_layer.__call__,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
984 |
hidden_states,
|
985 |
attention_mask,
|
986 |
position_ids,
|
987 |
+
past_key_values,
|
988 |
+
output_attentions,
|
989 |
)
|
990 |
else:
|
991 |
layer_outputs = decoder_layer(
|
992 |
hidden_states,
|
993 |
attention_mask=attention_mask,
|
994 |
position_ids=position_ids,
|
995 |
+
past_key_value=past_key_values,
|
996 |
output_attentions=output_attentions,
|
997 |
use_cache=use_cache,
|
998 |
)
|
|
|
1000 |
hidden_states = layer_outputs[0]
|
1001 |
|
1002 |
if use_cache:
|
1003 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1004 |
|
1005 |
if output_attentions:
|
1006 |
all_self_attns += (layer_outputs[1],)
|
1007 |
|
1008 |
hidden_states = self.norm(hidden_states)
|
1009 |
|
1010 |
+
# add hidden states from the last decoder layer
|
1011 |
if output_hidden_states:
|
1012 |
all_hidden_states += (hidden_states,)
|
1013 |
|
1014 |
+
next_cache = None
|
1015 |
+
if use_cache:
|
1016 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1017 |
+
|
1018 |
if not return_dict:
|
1019 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
|
|
|
|
|
|
|
1020 |
return BaseModelOutputWithPast(
|
1021 |
last_hidden_state=hidden_states,
|
1022 |
past_key_values=next_cache,
|
|
|
1025 |
)
|
1026 |
|
1027 |
|
1028 |
+
# Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM with PERSIMMON->STABLELM,Persimmon->StableLm
|
1029 |
+
class StableLmForCausalLM(StableLmPreTrainedModel):
|
1030 |
_tied_weights_keys = ["lm_head.weight"]
|
1031 |
|
1032 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with LLAMA->STABLELM,Llama->StableLm
|
1033 |
+
def __init__(self, config):
|
1034 |
super().__init__(config)
|
1035 |
+
self.model = StableLmModel(config)
|
1036 |
+
self.vocab_size = config.vocab_size
|
1037 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1038 |
|
1039 |
# Initialize weights and apply final processing
|
1040 |
self.post_init()
|
1041 |
|
1042 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
|
1043 |
def get_input_embeddings(self):
|
1044 |
return self.model.embed_tokens
|
1045 |
|
1046 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
|
1047 |
def set_input_embeddings(self, value):
|
1048 |
self.model.embed_tokens = value
|
1049 |
|
1050 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
|
1051 |
def get_output_embeddings(self):
|
1052 |
return self.lm_head
|
1053 |
|
1054 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
|
1055 |
+
def set_output_embeddings(self, new_embeddings):
|
1056 |
self.lm_head = new_embeddings
|
1057 |
|
1058 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
|
|
|
|
|
1059 |
def set_decoder(self, decoder):
|
1060 |
self.model = decoder
|
1061 |
|
1062 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
|
1063 |
+
def get_decoder(self):
|
1064 |
+
return self.model
|
1065 |
+
|
1066 |
+
@add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING)
|
1067 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1068 |
+
# Ignore copy
|
1069 |
def forward(
|
1070 |
self,
|
1071 |
+
input_ids: torch.LongTensor = None,
|
1072 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1073 |
position_ids: Optional[torch.LongTensor] = None,
|
1074 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1075 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1076 |
labels: Optional[torch.LongTensor] = None,
|
1077 |
use_cache: Optional[bool] = None,
|
|
|
1079 |
output_hidden_states: Optional[bool] = None,
|
1080 |
return_dict: Optional[bool] = None,
|
1081 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1082 |
+
r"""
|
1083 |
+
Args:
|
1084 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1085 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1086 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1087 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1088 |
+
|
1089 |
+
Returns:
|
1090 |
+
|
1091 |
+
Example:
|
1092 |
+
|
1093 |
+
```python
|
1094 |
+
>>> from transformers import AutoTokenizer, StableLmForCausalLM
|
1095 |
+
|
1096 |
+
>>> model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t")
|
1097 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
|
1098 |
+
|
1099 |
+
>>> prompt = "The weather is always wonderful in"
|
1100 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1101 |
+
|
1102 |
+
>>> # Generate
|
1103 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1104 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1105 |
+
'The weather is always wonderful in the summer in the city of San Diego. The city is located on the coast of the Pacific Ocean and is surrounded by'
|
1106 |
+
```"""
|
1107 |
+
|
1108 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1109 |
output_hidden_states = (
|
1110 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
|
|
|
|
|
|
|
1111 |
)
|
1112 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1113 |
|
|
|
1114 |
outputs = self.model(
|
1115 |
+
input_ids=input_ids,
|
1116 |
attention_mask=attention_mask,
|
1117 |
position_ids=position_ids,
|
1118 |
past_key_values=past_key_values,
|
|
|
1124 |
)
|
1125 |
|
1126 |
hidden_states = outputs[0]
|
1127 |
+
logits = self.lm_head(hidden_states)
|
1128 |
|
1129 |
loss = None
|
1130 |
if labels is not None:
|
|
|
1152 |
)
|
1153 |
|
1154 |
def prepare_inputs_for_generation(
|
1155 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
|
|
|
|
|
|
|
|
|
|
1156 |
):
|
|
|
1157 |
if past_key_values is not None:
|
1158 |
+
if isinstance(past_key_values, Cache):
|
1159 |
+
cache_length = past_key_values.get_seq_length()
|
1160 |
+
past_length = past_key_values.seen_tokens
|
1161 |
+
max_cache_length = past_key_values.get_max_length()
|
|
|
1162 |
else:
|
1163 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1164 |
+
max_cache_length = None
|
1165 |
+
|
1166 |
+
# Keep only the unprocessed tokens:
|
1167 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1168 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1169 |
+
# input)
|
1170 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1171 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1172 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1173 |
+
# input_ids based on the past_length.
|
1174 |
+
elif past_length < input_ids.shape[1]:
|
1175 |
+
input_ids = input_ids[:, past_length:]
|
1176 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1177 |
+
|
1178 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1179 |
+
if (
|
1180 |
+
max_cache_length is not None
|
1181 |
+
and attention_mask is not None
|
1182 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1183 |
+
):
|
1184 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1185 |
|
1186 |
position_ids = kwargs.get("position_ids", None)
|
1187 |
if attention_mask is not None and position_ids is None:
|
1188 |
+
# create position_ids on the fly for batch generation
|
1189 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
1190 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
1191 |
if past_key_values:
|
1192 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1193 |
|
1194 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1195 |
if inputs_embeds is not None and past_key_values is None:
|
1196 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
1197 |
else:
|
|
|
1199 |
|
1200 |
model_inputs.update(
|
1201 |
{
|
1202 |
+
"position_ids": position_ids,
|
1203 |
"past_key_values": past_key_values,
|
1204 |
"use_cache": kwargs.get("use_cache"),
|
1205 |
+
"attention_mask": attention_mask,
|
1206 |
}
|
1207 |
)
|
1208 |
return model_inputs
|
|
|
1212 |
reordered_past = ()
|
1213 |
for layer_past in past_key_values:
|
1214 |
reordered_past += (
|
1215 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
|
|
|
|
|
|
1216 |
)
|
1217 |
return reordered_past
|
1218 |
|
1219 |
|
1220 |
+
@add_start_docstrings(
|
1221 |
+
"""
|
1222 |
+
The StableLm transformer with a sequence classification head on top (linear layer).
|
1223 |
+
|
1224 |
+
[`StableLmForSequenceClassification`] uses the last token in order to do the classification, as other causal
|
1225 |
+
models (e.g. GPT-2) do.
|
1226 |
+
|
1227 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1228 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1229 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1230 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1231 |
+
each row of the batch).
|
1232 |
+
""",
|
1233 |
+
STABLELM_START_DOCSTRING,
|
1234 |
+
)
|
1235 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->STABLELM,Llama->StableLm
|
1236 |
+
class StableLmForSequenceClassification(StableLmPreTrainedModel):
|
1237 |
+
def __init__(self, config):
|
1238 |
+
super().__init__(config)
|
1239 |
+
self.num_labels = config.num_labels
|
1240 |
+
self.model = StableLmModel(config)
|
1241 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1242 |
+
|
1243 |
+
# Initialize weights and apply final processing
|
1244 |
+
self.post_init()
|
1245 |
+
|
1246 |
+
def get_input_embeddings(self):
|
1247 |
+
return self.model.embed_tokens
|
1248 |
+
|
1249 |
+
def set_input_embeddings(self, value):
|
1250 |
+
self.model.embed_tokens = value
|
1251 |
+
|
1252 |
+
@add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING)
|
1253 |
+
def forward(
|
1254 |
+
self,
|
1255 |
+
input_ids: torch.LongTensor = None,
|
1256 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1257 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1258 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1259 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1260 |
+
labels: Optional[torch.LongTensor] = None,
|
1261 |
+
use_cache: Optional[bool] = None,
|
1262 |
+
output_attentions: Optional[bool] = None,
|
1263 |
+
output_hidden_states: Optional[bool] = None,
|
1264 |
+
return_dict: Optional[bool] = None,
|
1265 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1266 |
+
r"""
|
1267 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1268 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1269 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1270 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1271 |
+
"""
|
1272 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1273 |
+
|
1274 |
+
transformer_outputs = self.model(
|
1275 |
+
input_ids,
|
1276 |
+
attention_mask=attention_mask,
|
1277 |
+
position_ids=position_ids,
|
1278 |
+
past_key_values=past_key_values,
|
1279 |
+
inputs_embeds=inputs_embeds,
|
1280 |
+
use_cache=use_cache,
|
1281 |
+
output_attentions=output_attentions,
|
1282 |
+
output_hidden_states=output_hidden_states,
|
1283 |
+
return_dict=return_dict,
|
1284 |
+
)
|
1285 |
+
hidden_states = transformer_outputs[0]
|
1286 |
+
logits = self.score(hidden_states)
|
1287 |
+
|
1288 |
+
if input_ids is not None:
|
1289 |
+
batch_size = input_ids.shape[0]
|
1290 |
+
else:
|
1291 |
+
batch_size = inputs_embeds.shape[0]
|
1292 |
+
|
1293 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1294 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1295 |
+
if self.config.pad_token_id is None:
|
1296 |
+
sequence_lengths = -1
|
1297 |
+
else:
|
1298 |
+
if input_ids is not None:
|
1299 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1300 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1301 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1302 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1303 |
+
else:
|
1304 |
+
sequence_lengths = -1
|
1305 |
+
|
1306 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1307 |
+
|
1308 |
+
loss = None
|
1309 |
+
if labels is not None:
|
1310 |
+
labels = labels.to(logits.device)
|
1311 |
+
if self.config.problem_type is None:
|
1312 |
+
if self.num_labels == 1:
|
1313 |
+
self.config.problem_type = "regression"
|
1314 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1315 |
+
self.config.problem_type = "single_label_classification"
|
1316 |
+
else:
|
1317 |
+
self.config.problem_type = "multi_label_classification"
|
1318 |
+
|
1319 |
+
if self.config.problem_type == "regression":
|
1320 |
+
loss_fct = MSELoss()
|
1321 |
+
if self.num_labels == 1:
|
1322 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1323 |
+
else:
|
1324 |
+
loss = loss_fct(pooled_logits, labels)
|
1325 |
+
elif self.config.problem_type == "single_label_classification":
|
1326 |
+
loss_fct = CrossEntropyLoss()
|
1327 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1328 |
+
elif self.config.problem_type == "multi_label_classification":
|
1329 |
+
loss_fct = BCEWithLogitsLoss()
|
1330 |
+
loss = loss_fct(pooled_logits, labels)
|
1331 |
+
if not return_dict:
|
1332 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1333 |
+
return ((loss,) + output) if loss is not None else output
|
1334 |
+
|
1335 |
+
return SequenceClassifierOutputWithPast(
|
1336 |
+
loss=loss,
|
1337 |
+
logits=pooled_logits,
|
1338 |
+
past_key_values=transformer_outputs.past_key_values,
|
1339 |
+
hidden_states=transformer_outputs.hidden_states,
|
1340 |
+
attentions=transformer_outputs.attentions,
|
1341 |
+
)
|