smb-vision-base-1029
This model is trained from scratch using VideoMAE on over 4.7k CT volumes.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-04
- train_batch_size: 32
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30.0
Training results
{ "_runtime": 54805.860011105, "_step": 4351, "eval/runtime": 17.8428, "eval/samples_per_second": 2.578, "eval/steps_per_second": 2.578, "total_flos": 3.8084565648770335e+21, "train/epoch": 30, "train/global_step": 4350, "train/grad_norm": 0.0735374316573143, "train/learning_rate": 0, "train/loss": 0.5736, "train_loss": 0.5022664608695041, "train_runtime": 54785.1298, "train_samples_per_second": 2.527, "train_steps_per_second": 0.079 }
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.0
- Datasets 3.0.2
- Tokenizers 0.20.1
How to use
# load data using `dataload.py`
model = VideoMAEForPreTraining.from_pretrained(
standardmodelbio/smb-vision-base,
trust_remote_code=True,
)
embedding = model.videomae(batch["image"])
- Downloads last month
- 11