Configuration Parsing
Warning:
In config.json: "architectures" must be an array
Model Card for Levanter-Backpack-1.4B
This is 1.4B parameter version of Backpack architecture, intended to combine strong modeling performance with an interface for interpretability and control.
Training Details
Training Data
This model was trained on the OpenWebText corpus.
Training Procedure
This model was trained for 450k gradient steps and cosine decaying learning rate from 1e-4 to zero, with a linear warmup of 5k steps.
Environmental Impact
- Hardware Type: v3-128 TPU (128 cores, 2TB Memory)
- Hours used: Roughly 8.6 days.
- Cloud Provider: Google Cloud Patform
- Compute Region: North America.
Model Architecture and Objective
This model was trained to minimize the cross-entropy loss, and is a Backpack language model.
Software
This model was trained with Levanter and Jax.
Loss Curve
How to Get Started with the Model
Please install transformers
, safetensors
and torch
to use this model.
pip install transformers safetensors torch
Run the following Python code:
import torch
import transformers
from transformers import AutoModelForCausalLM
model_id = "stanford-crfm/levanter-backpack-1b"
config = transformers.AutoConfig.from_pretrained(model_id, trust_remote_code=True)
torch_model = AutoModelForCausalLM.from_pretrained(
model_id,
config=config,
trust_remote_code=True
)
torch_model.eval()
input = torch.randint(0, 50264, (1, 512), dtype=torch.long)
torch_out = torch_model(input, position_ids=None,)
torch_out = torch.nn.functional.softmax(torch_out.logits, dim=-1)
print(torch_out.shape)
- Downloads last month
- 2,633
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.