File size: 8,308 Bytes
7800c33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
from transformers.models.bert.modeling_bert import BertModel, BertPreTrainedModel
from torch import nn
from itertools import chain
from torch.nn import MSELoss, CrossEntropyLoss
from cleantext import clean
from num2words import num2words
import re
import string

punct_chars = list((set(string.punctuation) | {'’', 'β€˜', '–', 'β€”', '~', '|', 'β€œ', '”', '…', "'", "`", '_'}))
punct_chars.sort()
punctuation = ''.join(punct_chars)
replace = re.compile('[%s]' % re.escape(punctuation))

def get_num_words(text):
    if not isinstance(text, str):
        print("%s is not a string" % text)
    text = replace.sub(' ', text)
    text = re.sub(r'\s+', ' ', text)
    text = text.strip()
    text = re.sub(r'\[.+\]', " ", text)
    return len(text.split())

def number_to_words(num):
    try:
        return num2words(re.sub(",", "", num))
    except:
        return num


clean_str = lambda s: clean(s,
                            fix_unicode=True,  # fix various unicode errors
                            to_ascii=True,  # transliterate to closest ASCII representation
                            lower=True,  # lowercase text
                            no_line_breaks=True,  # fully strip line breaks as opposed to only normalizing them
                            no_urls=True,  # replace all URLs with a special token
                            no_emails=True,  # replace all email addresses with a special token
                            no_phone_numbers=True,  # replace all phone numbers with a special token
                            no_numbers=True,  # replace all numbers with a special token
                            no_digits=False,  # replace all digits with a special token
                            no_currency_symbols=False,  # replace all currency symbols with a special token
                            no_punct=False,  # fully remove punctuation
                            replace_with_url="<URL>",
                            replace_with_email="<EMAIL>",
                            replace_with_phone_number="<PHONE>",
                            replace_with_number=lambda m: number_to_words(m.group()),
                            replace_with_digit="0",
                            replace_with_currency_symbol="<CUR>",
                            lang="en"
                            )

clean_str_nopunct = lambda s: clean(s,
                            fix_unicode=True,  # fix various unicode errors
                            to_ascii=True,  # transliterate to closest ASCII representation
                            lower=True,  # lowercase text
                            no_line_breaks=True,  # fully strip line breaks as opposed to only normalizing them
                            no_urls=True,  # replace all URLs with a special token
                            no_emails=True,  # replace all email addresses with a special token
                            no_phone_numbers=True,  # replace all phone numbers with a special token
                            no_numbers=True,  # replace all numbers with a special token
                            no_digits=False,  # replace all digits with a special token
                            no_currency_symbols=False,  # replace all currency symbols with a special token
                            no_punct=True,  # fully remove punctuation
                            replace_with_url="<URL>",
                            replace_with_email="<EMAIL>",
                            replace_with_phone_number="<PHONE>",
                            replace_with_number=lambda m: number_to_words(m.group()),
                            replace_with_digit="0",
                            replace_with_currency_symbol="<CUR>",
                            lang="en"
                            )



class MultiHeadModel(BertPreTrainedModel):
  """Pre-trained BERT model that uses our loss functions"""

  def __init__(self, config, head2size):
    super(MultiHeadModel, self).__init__(config, head2size)
    config.num_labels = 1
    self.bert = BertModel(config)
    self.dropout = nn.Dropout(config.hidden_dropout_prob)
    module_dict = {}
    for head_name, num_labels in head2size.items():
      module_dict[head_name] = nn.Linear(config.hidden_size, num_labels)
    self.heads = nn.ModuleDict(module_dict)

    self.init_weights()

  def forward(self, input_ids, token_type_ids=None, attention_mask=None,
              head2labels=None, return_pooler_output=False, head2mask=None,
              nsp_loss_weights=None):

    device = "cuda" if torch.cuda.is_available() else "cpu"

    # Get logits
    output = self.bert(
      input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask,
      output_attentions=False, output_hidden_states=False, return_dict=True)
    pooled_output = self.dropout(output["pooler_output"]).to(device)

    head2logits = {}
    return_dict = {}
    for head_name, head in self.heads.items():
      head2logits[head_name] = self.heads[head_name](pooled_output)
      head2logits[head_name] = head2logits[head_name].float()
      return_dict[head_name + "_logits"] = head2logits[head_name]


    if head2labels is not None:
      for head_name, labels in head2labels.items():
        num_classes = head2logits[head_name].shape[1]

        # Regression (e.g. for politeness)
        if num_classes == 1:

          # Only consider positive examples
          if head2mask is not None and head_name in head2mask:
            num_positives = head2labels[head2mask[head_name]].sum()  # use certain labels as mask
            if num_positives == 0:
              return_dict[head_name + "_loss"] = torch.tensor([0]).to(device)
            else:
              loss_fct = MSELoss(reduction='none')
              loss = loss_fct(head2logits[head_name].view(-1), labels.float().view(-1))
              return_dict[head_name + "_loss"] = loss.dot(head2labels[head2mask[head_name]].float().view(-1)) / num_positives
          else:
            loss_fct = MSELoss()
            return_dict[head_name + "_loss"] = loss_fct(head2logits[head_name].view(-1), labels.float().view(-1))
        else:
          loss_fct = CrossEntropyLoss(weight=nsp_loss_weights.float())
          return_dict[head_name + "_loss"] = loss_fct(head2logits[head_name], labels.view(-1))


    if return_pooler_output:
      return_dict["pooler_output"] = output["pooler_output"]

    return return_dict

class InputBuilder(object):
  """Base class for building inputs from segments."""

  def __init__(self, tokenizer):
      self.tokenizer = tokenizer
      self.mask = [tokenizer.mask_token_id]

  def build_inputs(self, history, reply, max_length):
      raise NotImplementedError

  def mask_seq(self, sequence, seq_id):
      sequence[seq_id] = self.mask
      return sequence

  @classmethod
  def _combine_sequence(self, history, reply, max_length, flipped=False):
      # Trim all inputs to max_length
      history = [s[:max_length] for s in history]
      reply = reply[:max_length]
      if flipped:
          return [reply] + history
      return history + [reply]


class BertInputBuilder(InputBuilder):
  """Processor for BERT inputs"""

  def __init__(self, tokenizer):
      InputBuilder.__init__(self, tokenizer)
      self.cls = [tokenizer.cls_token_id]
      self.sep = [tokenizer.sep_token_id]
      self.model_inputs = ["input_ids", "token_type_ids", "attention_mask"]
      self.padded_inputs = ["input_ids", "token_type_ids"]
      self.flipped = False


  def build_inputs(self, history, reply, max_length, input_str=True):
    """See base class."""
    if input_str:
        history = [self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(t)) for t in history]
        reply = self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(reply))
    sequence = self._combine_sequence(history, reply, max_length, self.flipped)
    sequence = [s + self.sep for s in sequence]
    sequence[0] = self.cls + sequence[0]

    instance = {}
    instance["input_ids"] = list(chain(*sequence))
    last_speaker = 0
    other_speaker = 1
    seq_length = len(sequence)
    instance["token_type_ids"] = [last_speaker if ((seq_length - i) % 2 == 1) else other_speaker
                                  for i, s in enumerate(sequence) for _ in s]
    return instance