File size: 8,308 Bytes
7800c33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import torch
from transformers.models.bert.modeling_bert import BertModel, BertPreTrainedModel
from torch import nn
from itertools import chain
from torch.nn import MSELoss, CrossEntropyLoss
from cleantext import clean
from num2words import num2words
import re
import string
punct_chars = list((set(string.punctuation) | {'β', 'β', 'β', 'β', '~', '|', 'β', 'β', 'β¦', "'", "`", '_'}))
punct_chars.sort()
punctuation = ''.join(punct_chars)
replace = re.compile('[%s]' % re.escape(punctuation))
def get_num_words(text):
if not isinstance(text, str):
print("%s is not a string" % text)
text = replace.sub(' ', text)
text = re.sub(r'\s+', ' ', text)
text = text.strip()
text = re.sub(r'\[.+\]', " ", text)
return len(text.split())
def number_to_words(num):
try:
return num2words(re.sub(",", "", num))
except:
return num
clean_str = lambda s: clean(s,
fix_unicode=True, # fix various unicode errors
to_ascii=True, # transliterate to closest ASCII representation
lower=True, # lowercase text
no_line_breaks=True, # fully strip line breaks as opposed to only normalizing them
no_urls=True, # replace all URLs with a special token
no_emails=True, # replace all email addresses with a special token
no_phone_numbers=True, # replace all phone numbers with a special token
no_numbers=True, # replace all numbers with a special token
no_digits=False, # replace all digits with a special token
no_currency_symbols=False, # replace all currency symbols with a special token
no_punct=False, # fully remove punctuation
replace_with_url="<URL>",
replace_with_email="<EMAIL>",
replace_with_phone_number="<PHONE>",
replace_with_number=lambda m: number_to_words(m.group()),
replace_with_digit="0",
replace_with_currency_symbol="<CUR>",
lang="en"
)
clean_str_nopunct = lambda s: clean(s,
fix_unicode=True, # fix various unicode errors
to_ascii=True, # transliterate to closest ASCII representation
lower=True, # lowercase text
no_line_breaks=True, # fully strip line breaks as opposed to only normalizing them
no_urls=True, # replace all URLs with a special token
no_emails=True, # replace all email addresses with a special token
no_phone_numbers=True, # replace all phone numbers with a special token
no_numbers=True, # replace all numbers with a special token
no_digits=False, # replace all digits with a special token
no_currency_symbols=False, # replace all currency symbols with a special token
no_punct=True, # fully remove punctuation
replace_with_url="<URL>",
replace_with_email="<EMAIL>",
replace_with_phone_number="<PHONE>",
replace_with_number=lambda m: number_to_words(m.group()),
replace_with_digit="0",
replace_with_currency_symbol="<CUR>",
lang="en"
)
class MultiHeadModel(BertPreTrainedModel):
"""Pre-trained BERT model that uses our loss functions"""
def __init__(self, config, head2size):
super(MultiHeadModel, self).__init__(config, head2size)
config.num_labels = 1
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
module_dict = {}
for head_name, num_labels in head2size.items():
module_dict[head_name] = nn.Linear(config.hidden_size, num_labels)
self.heads = nn.ModuleDict(module_dict)
self.init_weights()
def forward(self, input_ids, token_type_ids=None, attention_mask=None,
head2labels=None, return_pooler_output=False, head2mask=None,
nsp_loss_weights=None):
device = "cuda" if torch.cuda.is_available() else "cpu"
# Get logits
output = self.bert(
input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask,
output_attentions=False, output_hidden_states=False, return_dict=True)
pooled_output = self.dropout(output["pooler_output"]).to(device)
head2logits = {}
return_dict = {}
for head_name, head in self.heads.items():
head2logits[head_name] = self.heads[head_name](pooled_output)
head2logits[head_name] = head2logits[head_name].float()
return_dict[head_name + "_logits"] = head2logits[head_name]
if head2labels is not None:
for head_name, labels in head2labels.items():
num_classes = head2logits[head_name].shape[1]
# Regression (e.g. for politeness)
if num_classes == 1:
# Only consider positive examples
if head2mask is not None and head_name in head2mask:
num_positives = head2labels[head2mask[head_name]].sum() # use certain labels as mask
if num_positives == 0:
return_dict[head_name + "_loss"] = torch.tensor([0]).to(device)
else:
loss_fct = MSELoss(reduction='none')
loss = loss_fct(head2logits[head_name].view(-1), labels.float().view(-1))
return_dict[head_name + "_loss"] = loss.dot(head2labels[head2mask[head_name]].float().view(-1)) / num_positives
else:
loss_fct = MSELoss()
return_dict[head_name + "_loss"] = loss_fct(head2logits[head_name].view(-1), labels.float().view(-1))
else:
loss_fct = CrossEntropyLoss(weight=nsp_loss_weights.float())
return_dict[head_name + "_loss"] = loss_fct(head2logits[head_name], labels.view(-1))
if return_pooler_output:
return_dict["pooler_output"] = output["pooler_output"]
return return_dict
class InputBuilder(object):
"""Base class for building inputs from segments."""
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.mask = [tokenizer.mask_token_id]
def build_inputs(self, history, reply, max_length):
raise NotImplementedError
def mask_seq(self, sequence, seq_id):
sequence[seq_id] = self.mask
return sequence
@classmethod
def _combine_sequence(self, history, reply, max_length, flipped=False):
# Trim all inputs to max_length
history = [s[:max_length] for s in history]
reply = reply[:max_length]
if flipped:
return [reply] + history
return history + [reply]
class BertInputBuilder(InputBuilder):
"""Processor for BERT inputs"""
def __init__(self, tokenizer):
InputBuilder.__init__(self, tokenizer)
self.cls = [tokenizer.cls_token_id]
self.sep = [tokenizer.sep_token_id]
self.model_inputs = ["input_ids", "token_type_ids", "attention_mask"]
self.padded_inputs = ["input_ids", "token_type_ids"]
self.flipped = False
def build_inputs(self, history, reply, max_length, input_str=True):
"""See base class."""
if input_str:
history = [self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(t)) for t in history]
reply = self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(reply))
sequence = self._combine_sequence(history, reply, max_length, self.flipped)
sequence = [s + self.sep for s in sequence]
sequence[0] = self.cls + sequence[0]
instance = {}
instance["input_ids"] = list(chain(*sequence))
last_speaker = 0
other_speaker = 1
seq_length = len(sequence)
instance["token_type_ids"] = [last_speaker if ((seq_length - i) % 2 == 1) else other_speaker
for i, s in enumerate(sequence) for _ in s]
return instance |