|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
# SynthPose (MMPose HRNet48+DarkPose variant) |
|
|
|
The SynthPose model was proposed in [OpenCapBench: A Benchmark to Bridge Pose Estimation and Biomechanics](https://arxiv.org/abs/2406.09788) by Yoni Gozlan, Antoine Falisse, Scott Uhlrich, Anthony Gatti, Michael Black, Akshay Chaudhari. |
|
|
|
# Intended use cases |
|
|
|
This model uses DarkPose with an HRNet backbone. |
|
SynthPose is a new approach that enables finetuning of pre-trained 2D human pose models to predict an arbitrarily denser set of keypoints for accurate kinematic analysis through the use of synthetic data. |
|
More details are available in [OpenCapBench: A Benchmark to Bridge Pose Estimation and Biomechanics](https://arxiv.org/abs/2406.09788). |
|
This particular variant was finetuned on a set of keypoints usually found on Motion Capture setups, and include coco keypoints as well. |
|
|
|
The model predicts the following 52 markers: |
|
|
|
``` |
|
[ |
|
'nose', |
|
'left_eye', |
|
'right_eye', |
|
'left_ear', |
|
'right_ear', |
|
'left_shoulder', |
|
'right_shoulder', |
|
'left_elbow', |
|
'right_elbow', |
|
'left_wrist', |
|
'right_wrist', |
|
'left_hip', |
|
'right_hip', |
|
'left_knee', |
|
'right_knee', |
|
'left_ankle', |
|
'right_ankle', |
|
'sternum', |
|
'rshoulder', |
|
'lshoulder', |
|
'r_lelbow', |
|
'l_lelbow', |
|
'r_melbow', |
|
'l_melbow', |
|
'r_lwrist', |
|
'l_lwrist', |
|
'r_mwrist', |
|
'l_mwrist', |
|
'r_ASIS', |
|
'l_ASIS', |
|
'r_PSIS', |
|
'l_PSIS', |
|
'r_knee', |
|
'l_knee', |
|
'r_mknee', |
|
'l_mknee', |
|
'r_ankle', |
|
'l_ankle', |
|
'r_mankle', |
|
'l_mankle', |
|
'r_5meta', |
|
'l_5meta', |
|
'r_toe', |
|
'l_toe', |
|
'r_big_toe', |
|
'l_big_toe', |
|
'l_calc', |
|
'r_calc', |
|
'C7', |
|
'L2', |
|
'T11', |
|
'T6', |
|
] |
|
``` |
|
Where the first 17 keypoints are the COCO keypoints, and the next 35 are anatomical markers. |
|
|
|
# Usage |
|
|
|
## Installation |
|
This implementation is based on [MMPose](https://mmpose.readthedocs.io/en/latest/). |
|
MMpose requires torch, and the installation process is the following: |
|
```bash |
|
pip install -U openmim |
|
mim install mmengine |
|
mim install "mmcv>=2.0.1" |
|
mim install "mmdet>=3.1.0" |
|
mim install "mmpose>=1.1.0" |
|
``` |
|
|
|
## Image inference |
|
|
|
Here's how to load the model and run inference on an image: |
|
|
|
```python |
|
from huggingface_hub import snapshot_download |
|
from mmpose.apis import MMPoseInferencer |
|
|
|
snapshot_download(repo_id="yonigozlan/synthpose-hrnet-48-mmpose", local_dir="./synthpose-hrnet-48-mmpose") |
|
inferencer = MMPoseInferencer( |
|
pose2d='./synthpose-hrnet-48-mmpose/td-hm_hrnet-w48_dark-8xb32-210e_synthpose_inference.py', |
|
pose2d_weights='./synthpose-hrnet-48-mmpose/hrnet-w48_dark.pth' |
|
) |
|
|
|
url = "https://farm7.staticflickr.com/6105/6218847094_20deb6b938_z.jpg" |
|
result_generator = inferencer([url], pred_out_dir='predictions', vis_out_dir='visualizations') |
|
results = next(result_generator) |
|
``` |
|
|
|
## Video inference |
|
|
|
To run inference on a video, simply replace the last two lines with |
|
|
|
```python |
|
result_generator = inferencer("football.mp4", pred_out_dir='predictions', vis_out_dir='visualizations') |
|
results = [result for result in result_generator] |
|
``` |