statking's picture
Model save
f035f13 verified
|
raw
history blame
4.5 kB
metadata
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
  - trl
  - orpo
  - alignment-handbook
  - generated_from_trainer
model-index:
  - name: zephyr-7b-sft-full-orpo
    results: []

Visualize in Weights & Biases

zephyr-7b-sft-full-orpo

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5088
  • Rewards/chosen: -0.0404
  • Rewards/rejected: -0.0510
  • Rewards/accuracies: 0.6290
  • Rewards/margins: 0.0106
  • Logps/rejected: -1.0202
  • Logps/chosen: -0.8085
  • Logits/rejected: -2.5337
  • Logits/chosen: -2.5634
  • Nll Loss: 0.4741
  • Log Odds Ratio: -0.6379
  • Log Odds Chosen: 0.3305

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
0.5707 0.1049 100 1.1268 -0.0452 -0.0539 0.6369 0.0086 -1.0774 -0.9045 -2.5432 -2.5811 1.0893 -0.6413 0.2601
0.5663 0.2098 200 0.5741 -0.0440 -0.0534 0.6270 0.0094 -1.0676 -0.8799 -2.5377 -2.5597 0.5352 -0.6447 0.2863
0.5817 0.3146 300 0.5572 -0.0440 -0.0531 0.6190 0.0091 -1.0628 -0.8808 -2.4499 -2.4818 0.5207 -0.6503 0.2780
0.5724 0.4195 400 0.5416 -0.0426 -0.0515 0.625 0.0089 -1.0293 -0.8510 -2.4026 -2.4376 0.5060 -0.6551 0.2819
0.5486 0.5244 500 0.5344 -0.0425 -0.0526 0.6151 0.0101 -1.0514 -0.8492 -2.4373 -2.4718 0.4990 -0.6439 0.3193
0.5156 0.6293 600 0.5242 -0.0417 -0.0514 0.6151 0.0098 -1.0285 -0.8333 -2.5551 -2.5811 0.4882 -0.6470 0.3056
0.5297 0.7341 700 0.5191 -0.0411 -0.0521 0.6310 0.0110 -1.0422 -0.8215 -2.4477 -2.4801 0.4838 -0.6351 0.3407
0.5184 0.8390 800 0.5138 -0.0409 -0.0532 0.6310 0.0123 -1.0647 -0.8179 -2.4575 -2.4922 0.4796 -0.6304 0.3783
0.5235 0.9439 900 0.5088 -0.0404 -0.0510 0.6290 0.0106 -1.0202 -0.8085 -2.5337 -2.5634 0.4741 -0.6379 0.3305

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1