distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2091
  • Accuracy: 0.815

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2632 1.0 67 2.2116 0.335
1.8978 2.0 134 1.8129 0.5
1.5811 3.0 201 1.4946 0.66
1.1795 4.0 268 1.2851 0.65
1.0256 5.0 335 1.1538 0.66
0.9168 6.0 402 1.0270 0.69
0.9383 7.0 469 0.9349 0.73
0.5988 8.0 536 0.8443 0.795
0.4844 9.0 603 0.8053 0.775
0.422 10.0 670 0.7710 0.785
0.2138 11.0 737 0.7353 0.8
0.1834 12.0 804 0.8303 0.78
0.1789 13.0 871 0.7801 0.805
0.1649 14.0 938 0.8433 0.775
0.0259 15.0 1005 0.7846 0.8
0.0825 16.0 1072 0.9268 0.795
0.0091 17.0 1139 1.0432 0.795
0.0053 18.0 1206 0.9703 0.8
0.0038 19.0 1273 0.9689 0.82
0.0246 20.0 1340 1.0611 0.81
0.0023 21.0 1407 1.0502 0.82
0.0023 22.0 1474 1.0703 0.815
0.0016 23.0 1541 1.0911 0.825
0.0015 24.0 1608 1.1375 0.795
0.0013 25.0 1675 1.1529 0.815
0.0172 26.0 1742 1.1258 0.815
0.0011 27.0 1809 1.1206 0.82
0.001 28.0 1876 1.1492 0.82
0.0009 29.0 1943 1.1490 0.815
0.0008 30.0 2010 1.1527 0.815
0.0008 31.0 2077 1.2008 0.815
0.0638 32.0 2144 1.1685 0.815
0.0007 33.0 2211 1.1749 0.815
0.0858 34.0 2278 1.1683 0.815
0.0006 35.0 2345 1.1772 0.815
0.0007 36.0 2412 1.1801 0.815
0.0006 37.0 2479 1.1956 0.815
0.0006 38.0 2546 1.1937 0.815
0.0055 39.0 2613 1.2110 0.82
0.0006 40.0 2680 1.2023 0.815
0.0006 41.0 2747 1.2093 0.815
0.001 42.0 2814 1.2075 0.815
0.0006 43.0 2881 1.2079 0.815
0.0662 44.0 2948 1.2054 0.815
0.0006 45.0 3015 1.2066 0.815
0.0006 46.0 3082 1.2089 0.815
0.0006 47.0 3149 1.2093 0.815
0.0005 48.0 3216 1.2096 0.815
0.0005 49.0 3283 1.2094 0.815
0.0006 50.0 3350 1.2091 0.815

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
14
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for steimel64/distilhubert-finetuned-gtzan

Finetuned
(404)
this model

Dataset used to train steimel64/distilhubert-finetuned-gtzan

Evaluation results