|
--- |
|
license: apache-2.0 |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
datasets: |
|
- google/fleurs |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper_small_Occitan |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: google/fleurs |
|
type: google/fleurs |
|
config: oc_fr |
|
split: test |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 39.84848484848485 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper_small_Occitan |
|
|
|
This model is a fine-tuned version of [bofenghuang/whisper-small-cv11-french](https://huggingface.co/bofenghuang/whisper-small-cv11-french) on the google/fleurs oc_fr dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1744 |
|
- Wer: 39.8485 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 2000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 0.0087 | 30.77 | 400 | 1.1744 | 39.8485 | |
|
| 0.001 | 61.54 | 800 | 1.2807 | 39.8939 | |
|
| 0.0005 | 92.31 | 1200 | 1.3227 | 40.3447 | |
|
| 0.0004 | 123.08 | 1600 | 1.3445 | 40.1098 | |
|
| 0.0003 | 153.85 | 2000 | 1.3524 | 40.0492 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|