stevanojs's picture
End of training
ae40c58
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: emotion_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.50625
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotion_classification
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4477
- Accuracy: 0.5062
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 1.9208 | 0.2687 |
| No log | 2.0 | 80 | 1.6469 | 0.3688 |
| 1.7432 | 3.0 | 120 | 1.5591 | 0.45 |
| 1.7432 | 4.0 | 160 | 1.4880 | 0.4313 |
| 0.9778 | 5.0 | 200 | 1.4477 | 0.5062 |
| 0.9778 | 6.0 | 240 | 1.4999 | 0.45 |
| 0.9778 | 7.0 | 280 | 1.4733 | 0.475 |
| 0.442 | 8.0 | 320 | 1.4793 | 0.4625 |
| 0.442 | 9.0 | 360 | 1.5115 | 0.4625 |
| 0.2429 | 10.0 | 400 | 1.5220 | 0.4625 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3