steve-sli's picture
End of training
030ac67 verified
---
base_model: google/gemma-2b
library_name: peft
license: gemma
metrics:
- accuracy
tags:
- trl
- reward-trainer
- generated_from_trainer
model-index:
- name: 0721_201833-google-gemma-2b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/6-5940/huggingface/runs/mtxh3wh8)
# 0721_201833-google-gemma-2b
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7621
- Accuracy: 0.515
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-08
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.734 | 0.7692 | 5 | 0.7622 | 0.515 |
| 0.8399 | 1.5385 | 10 | 0.7622 | 0.515 |
| 0.7834 | 2.3077 | 15 | 0.7622 | 0.515 |
| 0.7012 | 3.0769 | 20 | 0.7622 | 0.515 |
| 0.7259 | 3.8462 | 25 | 0.7621 | 0.515 |
| 0.8204 | 4.6154 | 30 | 0.7621 | 0.515 |
| 0.7768 | 5.3846 | 35 | 0.7621 | 0.515 |
| 0.8371 | 6.1538 | 40 | 0.7621 | 0.515 |
| 0.7098 | 6.9231 | 45 | 0.7621 | 0.515 |
| 0.8716 | 7.6923 | 50 | 0.7621 | 0.515 |
| 0.6456 | 8.4615 | 55 | 0.7621 | 0.515 |
| 0.7848 | 9.2308 | 60 | 0.7621 | 0.515 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1