Steven C
Lambda - Add handler module
e868a55 unverified
raw
history blame
2.09 kB
import sys
import torch
import onnx
import onnxruntime as rt
from torchvision import transforms as T
from tokenizer_base import Tokenizer
from PIL import Image
class DocumentParserModel:
def __init__(
self,
model_path,
img_size,
charset
):
self.charset = charset
self.tokenizer_base = Tokenizer(self.charset)
self.transform = self.create_transform_pipeline(img_size)
self.ort_session = self.initialize_onnx_model(str(model_path))
def create_transform_pipeline(self, img_size):
transforms = [
T.Resize(img_size, T.InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(0.5, 0.5),
]
return T.Compose(transforms)
def initialize_onnx_model(self, model_path):
onnx_model = onnx.load(model_path)
onnx.checker.check_model(onnx_model)
return rt.InferenceSession(model_path)
# TODO: test with image blob
def predict_text(self, image_path):
try:
with Image.open(image_path) as img_org:
x = self.transform(img_org.convert("RGB")).unsqueeze(0)
ort_inputs = {self.ort_session.get_inputs()[0].name: x.cpu().numpy()}
logits = self.ort_session.run(None, ort_inputs)[0]
probs = torch.tensor(logits).softmax(-1)
preds, _ = self.tokenizer_base.decode(probs)
return preds[0]
except IOError:
print(f"Error: Cannot open image {image_path}")
return None
if __name__ == "__main__":
import sys
model_path = "captcha.onnx"
img_size = (32, 128)
charset = r"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"
doc_parser = DocumentParserModel(
model_path=model_path,
img_size=img_size,
charset=charset,
)
if len(sys.argv) > 1:
image_path = sys.argv[1]
result = doc_parser.predict_text(image_path)
print(result)
else:
print("Please provide an image path.")