Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +14 -18
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.36 +/- 0.31
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5b0b107245d39f144ae8a92212edad94aa4956b9f71319713ce845cf24dce5b
|
3 |
+
size 107999
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,18 +4,14 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
15 |
-
"net_arch": [
|
16 |
-
64,
|
17 |
-
64
|
18 |
-
],
|
19 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
20 |
"optimizer_kwargs": {
|
21 |
"alpha": 0.99,
|
@@ -50,19 +46,19 @@
|
|
50 |
"_num_timesteps_at_start": 0,
|
51 |
"seed": null,
|
52 |
"action_noise": null,
|
53 |
-
"start_time":
|
54 |
-
"learning_rate": 0.
|
55 |
"tensorboard_log": null,
|
56 |
"lr_schedule": {
|
57 |
":type:": "<class 'function'>",
|
58 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
59 |
},
|
60 |
"_last_obs": {
|
61 |
":type:": "<class 'collections.OrderedDict'>",
|
62 |
-
":serialized:": "
|
63 |
-
"achieved_goal": "[[
|
64 |
-
"desired_goal": "[[
|
65 |
-
"observation": "[[ 0.
|
66 |
},
|
67 |
"_last_episode_starts": {
|
68 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,9 +66,9 @@
|
|
70 |
},
|
71 |
"_last_original_obs": {
|
72 |
":type:": "<class 'collections.OrderedDict'>",
|
73 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
74 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
75 |
-
"desired_goal": "[[
|
76 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
77 |
},
|
78 |
"_episode_num": 0,
|
@@ -81,7 +77,7 @@
|
|
81 |
"_current_progress_remaining": 0.0,
|
82 |
"ep_info_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
85 |
},
|
86 |
"ep_success_buffer": {
|
87 |
":type:": "<class 'collections.deque'>",
|
@@ -89,7 +85,7 @@
|
|
89 |
},
|
90 |
"_n_updates": 50000,
|
91 |
"n_steps": 5,
|
92 |
-
"gamma": 0.
|
93 |
"gae_lambda": 1.0,
|
94 |
"ent_coef": 0.0,
|
95 |
"vf_coef": 0.5,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f939adefca0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f939adeab10>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
|
|
|
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1677623604689706799,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAufSwPuzWEj0edxA/ufSwPuzWEj0edxA/ufSwPuzWEj0edxA/ufSwPuzWEj0edxA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAi+qKPnZ/Ur4sTdc/7JUCv5+gg7/a5oM/PFZvP0Mn9z6ehFq/BpG2P08ayT7edbq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC59LA+7NYSPR53ED+GrYM6diY0O17Vb7u59LA+7NYSPR53ED+GrYM6diY0O17Vb7u59LA+7NYSPR53ED+GrYM6diY0O17Vb7u59LA+7NYSPR53ED+GrYM6diY0O17Vb7uUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.3456171 0.0358495 0.5643176]\n [0.3456171 0.0358495 0.5643176]\n [0.3456171 0.0358495 0.5643176]\n [0.3456171 0.0358495 0.5643176]]",
|
60 |
+
"desired_goal": "[[ 0.27132067 -0.20556435 1.6820426 ]\n [-0.5101001 -1.0283393 1.0304825 ]\n [ 0.9349096 0.48272142 -0.8535861 ]\n [ 1.4263008 0.39277884 -1.456722 ]]",
|
61 |
+
"observation": "[[ 0.3456171 0.0358495 0.5643176 0.00100462 0.00274887 -0.00365957]\n [ 0.3456171 0.0358495 0.5643176 0.00100462 0.00274887 -0.00365957]\n [ 0.3456171 0.0358495 0.5643176 0.00100462 0.00274887 -0.00365957]\n [ 0.3456171 0.0358495 0.5643176 0.00100462 0.00274887 -0.00365957]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAE3wRvgTgxz0dxdk9+vivPWnOCD4R+iM93kauvdHMMz1fO6I9d/eLPUyylj08rRk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.14207487 0.09759524 0.10633299]\n [ 0.0859241 0.13359989 0.0400334 ]\n [-0.08509611 0.0438965 0.0792148 ]\n [ 0.0683431 0.07358226 0.1500749 ]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxXJLqyFxAsCUhpRSlIwBbJRLMowBdJRHQKgeS7ZFoct1fZQoaAZoCWgPQwjvc3y0OAMFwJSGlFKUaBVLMmgWR0CoHcWDYh+wdX2UKGgGaAloD0MItFpgj4nU/7+UhpRSlGgVSzJoFkdAqB1L/Ot4iXV9lChoBmgJaA9DCCQlPQytTvG/lIaUUpRoFUsyaBZHQKgcuxt52Qp1fZQoaAZoCWgPQwgJM23/ykoCwJSGlFKUaBVLMmgWR0CoIAC/XXiBdX2UKGgGaAloD0MIOnZQietY9r+UhpRSlGgVSzJoFkdAqB9615Sm7HV9lChoBmgJaA9DCJojK78MJgbAlIaUUpRoFUsyaBZHQKge//6O5rh1fZQoaAZoCWgPQwhNnx1wXbH8v5SGlFKUaBVLMmgWR0CoHm8jJMg2dX2UKGgGaAloD0MITkaVYdytAcCUhpRSlGgVSzJoFkdAqCGswaisXHV9lChoBmgJaA9DCLUaEvdYGgDAlIaUUpRoFUsyaBZHQKghJmzSkTJ1fZQoaAZoCWgPQwi+TBQhdZsAwJSGlFKUaBVLMmgWR0CoIKzDGcWkdX2UKGgGaAloD0MI48RXO4oTAsCUhpRSlGgVSzJoFkdAqCAb2+PBBXV9lChoBmgJaA9DCHtmSYCaegDAlIaUUpRoFUsyaBZHQKgjSrd30PJ1fZQoaAZoCWgPQwinJVZGIx8DwJSGlFKUaBVLMmgWR0CoIsRoRIz4dX2UKGgGaAloD0MI7BLVWwMb/L+UhpRSlGgVSzJoFkdAqCJJnlGPP3V9lChoBmgJaA9DCG/yW3SylPi/lIaUUpRoFUsyaBZHQKghuXCTEBN1fZQoaAZoCWgPQwgIAfkSKpgAwJSGlFKUaBVLMmgWR0CoJL7VrhzedX2UKGgGaAloD0MIkSxgArdu/r+UhpRSlGgVSzJoFkdAqCQ3qmj0tnV9lChoBmgJaA9DCOF86liltPu/lIaUUpRoFUsyaBZHQKgjvETg2qF1fZQoaAZoCWgPQwio/6z58fcBwJSGlFKUaBVLMmgWR0CoIyq4pc5bdX2UKGgGaAloD0MIP4ulSL6S+r+UhpRSlGgVSzJoFkdAqCW087p3YHV9lChoBmgJaA9DCJgYy/RLJAjAlIaUUpRoFUsyaBZHQKglLfNzKcN1fZQoaAZoCWgPQwi21hcJbfn7v5SGlFKUaBVLMmgWR0CoJLKZML4OdX2UKGgGaAloD0MIGM3K9iEv/7+UhpRSlGgVSzJoFkdAqCQhFAmiQHV9lChoBmgJaA9DCLag98YQQAXAlIaUUpRoFUsyaBZHQKgmrdhRZU11fZQoaAZoCWgPQwisxacAGO8BwJSGlFKUaBVLMmgWR0CoJibe/Ho6dX2UKGgGaAloD0MIuvjbniARBcCUhpRSlGgVSzJoFkdAqCWrohY/3XV9lChoBmgJaA9DCB8sY0M32wPAlIaUUpRoFUsyaBZHQKglGhwEQoV1fZQoaAZoCWgPQwgH0VrR5jj+v5SGlFKUaBVLMmgWR0CoJ6ZrpJPJdX2UKGgGaAloD0MIbhea6zSSAsCUhpRSlGgVSzJoFkdAqCcfMSsbN3V9lChoBmgJaA9DCJ63sdmRagLAlIaUUpRoFUsyaBZHQKgmpBnjABV1fZQoaAZoCWgPQwjByMuaWCAAwJSGlFKUaBVLMmgWR0CoJhLQHAymdX2UKGgGaAloD0MIBrth26KM/7+UhpRSlGgVSzJoFkdAqCikmv4dqHV9lChoBmgJaA9DCLwgIjXtAgPAlIaUUpRoFUsyaBZHQKgoHW/ag291fZQoaAZoCWgPQwg+zcmLTEABwJSGlFKUaBVLMmgWR0CoJ6IESuhcdX2UKGgGaAloD0MIigJ9Ik+S/7+UhpRSlGgVSzJoFkdAqCcQiqyWzHV9lChoBmgJaA9DCEbRAx+DFfe/lIaUUpRoFUsyaBZHQKgplmhdt2t1fZQoaAZoCWgPQwiX4xWInhT/v5SGlFKUaBVLMmgWR0CoKQ8riEQHdX2UKGgGaAloD0MI4J7nTxt1CsCUhpRSlGgVSzJoFkdAqCiUCq6vq3V9lChoBmgJaA9DCI2ZRL3gMwfAlIaUUpRoFUsyaBZHQKgoAt6ol2N1fZQoaAZoCWgPQwgTfqmfNxX6v5SGlFKUaBVLMmgWR0CoKpHvttygdX2UKGgGaAloD0MI/tMNFHgnBcCUhpRSlGgVSzJoFkdAqCoKxcE/0XV9lChoBmgJaA9DCPsgy4KJPwHAlIaUUpRoFUsyaBZHQKgpj0VafSR1fZQoaAZoCWgPQwhWZd8Vwd8MwJSGlFKUaBVLMmgWR0CoKP3MINVjdX2UKGgGaAloD0MI1/Z2S3KAAsCUhpRSlGgVSzJoFkdAqCuEcyWRinV9lChoBmgJaA9DCJyiI7n8hwHAlIaUUpRoFUsyaBZHQKgq/We6I311fZQoaAZoCWgPQwimXyLeOr8FwJSGlFKUaBVLMmgWR0CoKoIaLn9vdX2UKGgGaAloD0MIf6ZetwgMBMCUhpRSlGgVSzJoFkdAqCnwis4kvHV9lChoBmgJaA9DCKIm+nyUkQLAlIaUUpRoFUsyaBZHQKgsfCeEqUh1fZQoaAZoCWgPQwghsHJoke3+v5SGlFKUaBVLMmgWR0CoK/Uq6OHWdX2UKGgGaAloD0MI8S2sG+9+EMCUhpRSlGgVSzJoFkdAqCt5pL26CnV9lChoBmgJaA9DCD1fs1w2OgXAlIaUUpRoFUsyaBZHQKgq6CIUJv51fZQoaAZoCWgPQwh1rb1PVeH7v5SGlFKUaBVLMmgWR0CoLXegDifhdX2UKGgGaAloD0MIucFQhxUOA8CUhpRSlGgVSzJoFkdAqCzwiiZfD3V9lChoBmgJaA9DCLjoZKn1HgPAlIaUUpRoFUsyaBZHQKgsdXYlIEt1fZQoaAZoCWgPQwi8d9SYELP/v5SGlFKUaBVLMmgWR0CoK+QO4G2UdX2UKGgGaAloD0MIw9hCkINyBsCUhpRSlGgVSzJoFkdAqC6MGcFyJnV9lChoBmgJaA9DCMjNcAM+/wHAlIaUUpRoFUsyaBZHQKguBVFQVKx1fZQoaAZoCWgPQwgfTIqPT4j+v5SGlFKUaBVLMmgWR0CoLYngHeJpdX2UKGgGaAloD0MIhsd+FkvRDsCUhpRSlGgVSzJoFkdAqCz4eJYT03V9lChoBmgJaA9DCNUjDW5riwDAlIaUUpRoFUsyaBZHQKgvkZtNzsB1fZQoaAZoCWgPQwhdcAZ/vzgKwJSGlFKUaBVLMmgWR0CoLwrPUrkKdX2UKGgGaAloD0MI8KSFyyps/b+UhpRSlGgVSzJoFkdAqC6Phhpg1HV9lChoBmgJaA9DCEbQmEnUCwLAlIaUUpRoFUsyaBZHQKgt/lAeJYV1fZQoaAZoCWgPQwglAtU/iGT6v5SGlFKUaBVLMmgWR0CoMJaFmFrVdX2UKGgGaAloD0MI0VlmEYptBMCUhpRSlGgVSzJoFkdAqDAPRgJC0HV9lChoBmgJaA9DCFSPNLit7QPAlIaUUpRoFUsyaBZHQKgvlBHkLhJ1fZQoaAZoCWgPQwiD+MCO/4ICwJSGlFKUaBVLMmgWR0CoLwLhR64UdX2UKGgGaAloD0MI0VeQZiyaBsCUhpRSlGgVSzJoFkdAqDGNapxWDHV9lChoBmgJaA9DCLyvyoXKHwPAlIaUUpRoFUsyaBZHQKgxBjNIK+l1fZQoaAZoCWgPQwhi9UcYBuz9v5SGlFKUaBVLMmgWR0CoMIrBTGYKdX2UKGgGaAloD0MIv2A3bFsU/L+UhpRSlGgVSzJoFkdAqC/5V6u4gHV9lChoBmgJaA9DCFCpEmVv6QHAlIaUUpRoFUsyaBZHQKgyjLCemN11fZQoaAZoCWgPQwj0+/7Ni3MGwJSGlFKUaBVLMmgWR0CoMgV4Pf8/dX2UKGgGaAloD0MIPIOG/gnOAcCUhpRSlGgVSzJoFkdAqDGJ9oexOnV9lChoBmgJaA9DCMSZX80BggDAlIaUUpRoFUsyaBZHQKgw+GxD9fl1fZQoaAZoCWgPQwhmTSzwFd0BwJSGlFKUaBVLMmgWR0CoM3hUzbeudX2UKGgGaAloD0MIweYcPBPaAsCUhpRSlGgVSzJoFkdAqDLw+lj3EnV9lChoBmgJaA9DCBnFckurwQjAlIaUUpRoFUsyaBZHQKgydX9zfaZ1fZQoaAZoCWgPQwhmFMstrQYKwJSGlFKUaBVLMmgWR0CoMeRREWqMdX2UKGgGaAloD0MIE9bG2AlvBMCUhpRSlGgVSzJoFkdAqDRt45cTrXV9lChoBmgJaA9DCIVCBBxChRDAlIaUUpRoFUsyaBZHQKgz5zOHFgl1fZQoaAZoCWgPQwgeUgyQaAIFwJSGlFKUaBVLMmgWR0CoM2v0Zm7KdX2UKGgGaAloD0MI8Wd4swYPDsCUhpRSlGgVSzJoFkdAqDLaxTsIFHV9lChoBmgJaA9DCMB4Bg39MwDAlIaUUpRoFUsyaBZHQKg1r/EwWWR1fZQoaAZoCWgPQwiinGhXIaUKwJSGlFKUaBVLMmgWR0CoNSlERaoudX2UKGgGaAloD0MIRQ2mYfgIBcCUhpRSlGgVSzJoFkdAqDSuUnogWHV9lChoBmgJaA9DCDfhXpm3qgrAlIaUUpRoFUsyaBZHQKg0HUI9kjJ1fZQoaAZoCWgPQwjEJ51IMFUMwJSGlFKUaBVLMmgWR0CoNzOJUHY6dX2UKGgGaAloD0MIvRqgNNTo+L+UhpRSlGgVSzJoFkdAqDas12q1gHV9lChoBmgJaA9DCIS9iSE52QPAlIaUUpRoFUsyaBZHQKg2Mfra/RF1fZQoaAZoCWgPQwg/c9anHJMHwJSGlFKUaBVLMmgWR0CoNaDtPYWddX2UKGgGaAloD0MIpwcFpWgFAsCUhpRSlGgVSzJoFkdAqDi55qubJHV9lChoBmgJaA9DCNPZyeAoWQPAlIaUUpRoFUsyaBZHQKg4MyWRigF1fZQoaAZoCWgPQwiKO97kt+gBwJSGlFKUaBVLMmgWR0CoN7gogFHKdX2UKGgGaAloD0MIxuHMr+ZAA8CUhpRSlGgVSzJoFkdAqDcnSOR1YHV9lChoBmgJaA9DCKpE2VvKuQHAlIaUUpRoFUsyaBZHQKg6Q6S1Vo91fZQoaAZoCWgPQwibHhSUolUDwJSGlFKUaBVLMmgWR0CoOb1aOgg6dX2UKGgGaAloD0MImKPH723aAsCUhpRSlGgVSzJoFkdAqDlC06YE4nV9lChoBmgJaA9DCKlqgqj7wALAlIaUUpRoFUsyaBZHQKg4sd/8VHp1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
|
|
85 |
},
|
86 |
"_n_updates": 50000,
|
87 |
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
90 |
"ent_coef": 0.0,
|
91 |
"vf_coef": 0.5,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afdad8e4f1dba183cda72a940ea86db9d815e11ddc881829e8d8dd460da859ac
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc9b8534ad89515fb85942e632cfdda5cec4273ffbc57e907a7cd6f5fe905543
|
3 |
+
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7effd6062f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7effd605dd80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVlAAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKEtAS0BljA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "net_arch": [64, 64], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677618127043242573, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFnWbPl9ki70VxJc8FnWbPl9ki70VxJc8FnWbPl9ki70VxJc8FnWbPl9ki70VxJc8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0KCZP58p0r8u20i+r0VyP9ZRUj9yyl6/3egYP9ZkID4yJr8+jYbNvndKn7+ku5w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLwWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLwWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLwWdZs+X2SLvRXElzxLPWM9RvCFvNP8mLyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.30362767 -0.06806254 0.01852612]\n [ 0.30362767 -0.06806254 0.01852612]\n [ 0.30362767 -0.06806254 0.01852612]\n [ 0.30362767 -0.06806254 0.01852612]]", "desired_goal": "[[ 1.2002201 -1.6418952 -0.1961486 ]\n [ 0.9463758 0.8215612 -0.8702766 ]\n [ 0.5973032 0.15663466 0.37333828]\n [-0.40141717 -1.24446 0.30611908]]", "observation": "[[ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]\n [ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]\n [ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]\n [ 0.30362767 -0.06806254 0.01852612 0.05547838 -0.01634992 -0.01867524]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADsnYPQUhGT6d5Rk+tkrLPGq/L71TLIo+TgKoOxDo3b01KGI+yk4Nvtp3Rj1d8Do+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10585223 0.14954002 0.15028997]\n [ 0.0248159 -0.04290716 0.26986942]\n [ 0.00512723 -0.10835278 0.2208565 ]\n [-0.13799587 0.04845414 0.18255754]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7Ny0GafFM8CUhpRSlIwBbJRLMowBdJRHQKgVcemvW6N1fZQoaAZoCWgPQwjsUbgehQs6wJSGlFKUaBVLMmgWR0CoFR1Da4+bdX2UKGgGaAloD0MIYk1lUdhhOMCUhpRSlGgVSzJoFkdAqBTKQtBfKXV9lChoBmgJaA9DCFmis8wiwDjAlIaUUpRoFUsyaBZHQKgUeHgxagV1fZQoaAZoCWgPQwiMn8a9+dk4wJSGlFKUaBVLMmgWR0CoFpCm2sq8dX2UKGgGaAloD0MI/OO9amUaKsCUhpRSlGgVSzJoFkdAqBY7/82rGXV9lChoBmgJaA9DCAby7PKti0fAlIaUUpRoFUsyaBZHQKgV6SdOIqN1fZQoaAZoCWgPQwhIwVPIlboqwJSGlFKUaBVLMmgWR0CoFZdvS+g2dX2UKGgGaAloD0MIJ2w/GeNDOMCUhpRSlGgVSzJoFkdAqBeqm4y44XV9lChoBmgJaA9DCEpfCDnvCzDAlIaUUpRoFUsyaBZHQKgXVgF5fMR1fZQoaAZoCWgPQwgrEhPU8PUwwJSGlFKUaBVLMmgWR0CoFwMYl6Z6dX2UKGgGaAloD0MII7vSMlJrNsCUhpRSlGgVSzJoFkdAqBaxY3eenXV9lChoBmgJaA9DCOzctBmnGTrAlIaUUpRoFUsyaBZHQKgYwoo/iYN1fZQoaAZoCWgPQwj3kzE+zA4twJSGlFKUaBVLMmgWR0CoGG3sw+MZdX2UKGgGaAloD0MIB0MdVrh3RsCUhpRSlGgVSzJoFkdAqBgbFbVz63V9lChoBmgJaA9DCDj1geSdsynAlIaUUpRoFUsyaBZHQKgXyWZZ0S11fZQoaAZoCWgPQwiNXaJ6a8QzwJSGlFKUaBVLMmgWR0CoGeenZTQ3dX2UKGgGaAloD0MIZyrEI/EOMMCUhpRSlGgVSzJoFkdAqBmTFVDKHXV9lChoBmgJaA9DCHPbvkf9MUbAlIaUUpRoFUsyaBZHQKgZQC8OCoV1fZQoaAZoCWgPQwhwzojS3mBHwJSGlFKUaBVLMmgWR0CoGO5+QU5/dX2UKGgGaAloD0MI8djPYinqRsCUhpRSlGgVSzJoFkdAqBsLeQ+2VnV9lChoBmgJaA9DCOuQm+EGqkXAlIaUUpRoFUsyaBZHQKgatw+dK/V1fZQoaAZoCWgPQwhIp658lp85wJSGlFKUaBVLMmgWR0CoGmQkgOjJdX2UKGgGaAloD0MIEOz4LxD4N8CUhpRSlGgVSzJoFkdAqBoSeqaPS3V9lChoBmgJaA9DCHrFU480wDDAlIaUUpRoFUsyaBZHQKgcN3xFy7x1fZQoaAZoCWgPQwjqJFtdTqtGwJSGlFKUaBVLMmgWR0CoG+LoOhCddX2UKGgGaAloD0MIg94bQwCoKcCUhpRSlGgVSzJoFkdAqBuP/o7muHV9lChoBmgJaA9DCJilnZrLUTPAlIaUUpRoFUsyaBZHQKgbPm7rcCZ1fZQoaAZoCWgPQwh5AmGnWNk5wJSGlFKUaBVLMmgWR0CoHUtzKcNIdX2UKGgGaAloD0MIdVq3Qe03R8CUhpRSlGgVSzJoFkdAqBz25H3DenV9lChoBmgJaA9DCNGwGHWtcTPAlIaUUpRoFUsyaBZHQKgco+yquKZ1fZQoaAZoCWgPQwjKNJpcjEE1wJSGlFKUaBVLMmgWR0CoHFIpYs/ZdX2UKGgGaAloD0MIW1653jYfMsCUhpRSlGgVSzJoFkdAqB5hqEeyRnV9lChoBmgJaA9DCB0c7E0MVTfAlIaUUpRoFUsyaBZHQKgeDRWtEG91fZQoaAZoCWgPQwjQDriumC01wJSGlFKUaBVLMmgWR0CoHbomXw9adX2UKGgGaAloD0MIdVd2weA6M8CUhpRSlGgVSzJoFkdAqB1ohB7eEnV9lChoBmgJaA9DCGuBPSZSFkjAlIaUUpRoFUsyaBZHQKgfgr9VFQV1fZQoaAZoCWgPQwjqlEc3wr4wwJSGlFKUaBVLMmgWR0CoHy47ihnKdX2UKGgGaAloD0MIKbAApgzaRsCUhpRSlGgVSzJoFkdAqB7bUXpGF3V9lChoBmgJaA9DCGBzDp4JvSrAlIaUUpRoFUsyaBZHQKgeibF0gbJ1fZQoaAZoCWgPQwjw+PauQaM4wJSGlFKUaBVLMmgWR0CoIJg9vCMxdX2UKGgGaAloD0MIIHwo0ZJXMcCUhpRSlGgVSzJoFkdAqCBDoEB8yHV9lChoBmgJaA9DCEYL0LaaLTjAlIaUUpRoFUsyaBZHQKgf8KJl8PZ1fZQoaAZoCWgPQwgQr+sX7Ko3wJSGlFKUaBVLMmgWR0CoH570OEuhdX2UKGgGaAloD0MIOUIG8uzmRcCUhpRSlGgVSzJoFkdAqCI6M3qA0HV9lChoBmgJaA9DCAh3Z+22kzHAlIaUUpRoFUsyaBZHQKgh5mOEM9d1fZQoaAZoCWgPQwj/HydMGGE7wJSGlFKUaBVLMmgWR0CoIZQ++ueSdX2UKGgGaAloD0MI/5O/e0ehOMCUhpRSlGgVSzJoFkdAqCFDVjI7vHV9lChoBmgJaA9DCBIUP8bcZTPAlIaUUpRoFUsyaBZHQKgkDO1v2oN1fZQoaAZoCWgPQwid9SnHZNE3wJSGlFKUaBVLMmgWR0CoI7k/bCaadX2UKGgGaAloD0MIZ4F2hxQvN8CUhpRSlGgVSzJoFkdAqCNnHWBjF3V9lChoBmgJaA9DCMQ/bOnRmDfAlIaUUpRoFUsyaBZHQKgjFmlqJuV1fZQoaAZoCWgPQwgLQQ5KmL0xwJSGlFKUaBVLMmgWR0CoJdwlruYydX2UKGgGaAloD0MIoKnXLQLDOMCUhpRSlGgVSzJoFkdAqCWIe/5+IHV9lChoBmgJaA9DCLmq7LsisDHAlIaUUpRoFUsyaBZHQKglNnwob4t1fZQoaAZoCWgPQwhEhlW8kY03wJSGlFKUaBVLMmgWR0CoJOWQwK0EdX2UKGgGaAloD0MI8IrgfyvFNsCUhpRSlGgVSzJoFkdAqCe6pm29c3V9lChoBmgJaA9DCGpLHeT1GCvAlIaUUpRoFUsyaBZHQKgnZwEyLyd1fZQoaAZoCWgPQwhYycfuAvk1wJSGlFKUaBVLMmgWR0CoJxUUXYUWdX2UKGgGaAloD0MInStKCcH6OcCUhpRSlGgVSzJoFkdAqCbEXxe9jHV9lChoBmgJaA9DCE6XxcTmIzrAlIaUUpRoFUsyaBZHQKgppW9US7J1fZQoaAZoCWgPQwiIghlTsJ4wwJSGlFKUaBVLMmgWR0CoKVHOKO1fdX2UKGgGaAloD0MIOX6oNGKkRsCUhpRSlGgVSzJoFkdAqCj/5i3G43V9lChoBmgJaA9DCAthNZawxi/AlIaUUpRoFUsyaBZHQKgory1/lQx1fZQoaAZoCWgPQwjAywwbZftFwJSGlFKUaBVLMmgWR0CoK0hV2icodX2UKGgGaAloD0MIDw2LUdfiM8CUhpRSlGgVSzJoFkdAqCrzwc5sCXV9lChoBmgJaA9DCHvBpzl5GTXAlIaUUpRoFUsyaBZHQKgqoN0eU6h1fZQoaAZoCWgPQwhinSrfM8IywJSGlFKUaBVLMmgWR0CoKk8ifQKKdX2UKGgGaAloD0MIf8LZrWViOMCUhpRSlGgVSzJoFkdAqCxc3XI2fnV9lChoBmgJaA9DCDdV98jmQjbAlIaUUpRoFUsyaBZHQKgsCNQ0oBt1fZQoaAZoCWgPQwifPCzUmso0wJSGlFKUaBVLMmgWR0CoK7aUA1ejdX2UKGgGaAloD0MIBvcDHhhiR8CUhpRSlGgVSzJoFkdAqCtldxAB1nV9lChoBmgJaA9DCNC1L6AXVjHAlIaUUpRoFUsyaBZHQKgte2SdOIt1fZQoaAZoCWgPQwiPHVTiOpYxwJSGlFKUaBVLMmgWR0CoLSa+evpydX2UKGgGaAloD0MIXKrSFteYMMCUhpRSlGgVSzJoFkdAqCzTujRD1HV9lChoBmgJaA9DCMbhzK/mwEfAlIaUUpRoFUsyaBZHQKgsgfeUILR1fZQoaAZoCWgPQwgPtAJDVvcwwJSGlFKUaBVLMmgWR0CoLwGWldkbdX2UKGgGaAloD0MIOIO/X8yeL8CUhpRSlGgVSzJoFkdAqC6tyHVPN3V9lChoBmgJaA9DCI1F09nJZDjAlIaUUpRoFUsyaBZHQKguW6nR9gF1fZQoaAZoCWgPQwjx9iAE5Gc4wJSGlFKUaBVLMmgWR0CoLgrnLaEjdX2UKGgGaAloD0MID5iHTPmsR8CUhpRSlGgVSzJoFkdAqDDWC04R3HV9lChoBmgJaA9DCBUZHZCEkTjAlIaUUpRoFUsyaBZHQKgwgkona391fZQoaAZoCWgPQwh4fHvXoHMwwJSGlFKUaBVLMmgWR0CoMDAfuCwsdX2UKGgGaAloD0MIlE25wrv0K8CUhpRSlGgVSzJoFkdAqC/fPC2tuHV9lChoBmgJaA9DCKiN6nQgMznAlIaUUpRoFUsyaBZHQKgyqt3fQ8h1fZQoaAZoCWgPQwi0ykxp/edIwJSGlFKUaBVLMmgWR0CoMlc7hegMdX2UKGgGaAloD0MIPKWD9X++N8CUhpRSlGgVSzJoFkdAqDIFkjHGTHV9lChoBmgJaA9DCO4HPDCAPDPAlIaUUpRoFUsyaBZHQKgxtOcDr7h1fZQoaAZoCWgPQwjEJjJzgfstwJSGlFKUaBVLMmgWR0CoNIWuX/o8dX2UKGgGaAloD0MI4c/wZg1yMsCUhpRSlGgVSzJoFkdAqDQyLQ5WBHV9lChoBmgJaA9DCNGSx9PyP0fAlIaUUpRoFUsyaBZHQKgz4EEkjX51fZQoaAZoCWgPQwi2SxsOS3sywJSGlFKUaBVLMmgWR0CoM4+A3DNydX2UKGgGaAloD0MINUI/U6+VScCUhpRSlGgVSzJoFkdAqDZkWhysCHV9lChoBmgJaA9DCI/8wcBzlzTAlIaUUpRoFUsyaBZHQKg2EMBIWgx1fZQoaAZoCWgPQwgVcqWeBYk3wJSGlFKUaBVLMmgWR0CoNb62OQyRdX2UKGgGaAloD0MIxhft8ULGNMCUhpRSlGgVSzJoFkdAqDVuA7Ppp3V9lChoBmgJaA9DCB2wq8lTukjAlIaUUpRoFUsyaBZHQKg3+WsRxtJ1fZQoaAZoCWgPQwgfSN45lFkuwJSGlFKUaBVLMmgWR0CoN6TC+De1dX2UKGgGaAloD0MIeeblsPseLMCUhpRSlGgVSzJoFkdAqDdRxrBTGnV9lChoBmgJaA9DCJOoF3ya8znAlIaUUpRoFUsyaBZHQKg3AAG0NSZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f939adefca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f939adeab10>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677623604689706799, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAufSwPuzWEj0edxA/ufSwPuzWEj0edxA/ufSwPuzWEj0edxA/ufSwPuzWEj0edxA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAi+qKPnZ/Ur4sTdc/7JUCv5+gg7/a5oM/PFZvP0Mn9z6ehFq/BpG2P08ayT7edbq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC59LA+7NYSPR53ED+GrYM6diY0O17Vb7u59LA+7NYSPR53ED+GrYM6diY0O17Vb7u59LA+7NYSPR53ED+GrYM6diY0O17Vb7u59LA+7NYSPR53ED+GrYM6diY0O17Vb7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3456171 0.0358495 0.5643176]\n [0.3456171 0.0358495 0.5643176]\n [0.3456171 0.0358495 0.5643176]\n [0.3456171 0.0358495 0.5643176]]", "desired_goal": "[[ 0.27132067 -0.20556435 1.6820426 ]\n [-0.5101001 -1.0283393 1.0304825 ]\n [ 0.9349096 0.48272142 -0.8535861 ]\n [ 1.4263008 0.39277884 -1.456722 ]]", "observation": "[[ 0.3456171 0.0358495 0.5643176 0.00100462 0.00274887 -0.00365957]\n [ 0.3456171 0.0358495 0.5643176 0.00100462 0.00274887 -0.00365957]\n [ 0.3456171 0.0358495 0.5643176 0.00100462 0.00274887 -0.00365957]\n [ 0.3456171 0.0358495 0.5643176 0.00100462 0.00274887 -0.00365957]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAE3wRvgTgxz0dxdk9+vivPWnOCD4R+iM93kauvdHMMz1fO6I9d/eLPUyylj08rRk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.14207487 0.09759524 0.10633299]\n [ 0.0859241 0.13359989 0.0400334 ]\n [-0.08509611 0.0438965 0.0792148 ]\n [ 0.0683431 0.07358226 0.1500749 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxXJLqyFxAsCUhpRSlIwBbJRLMowBdJRHQKgeS7ZFoct1fZQoaAZoCWgPQwjvc3y0OAMFwJSGlFKUaBVLMmgWR0CoHcWDYh+wdX2UKGgGaAloD0MItFpgj4nU/7+UhpRSlGgVSzJoFkdAqB1L/Ot4iXV9lChoBmgJaA9DCCQlPQytTvG/lIaUUpRoFUsyaBZHQKgcuxt52Qp1fZQoaAZoCWgPQwgJM23/ykoCwJSGlFKUaBVLMmgWR0CoIAC/XXiBdX2UKGgGaAloD0MIOnZQietY9r+UhpRSlGgVSzJoFkdAqB9615Sm7HV9lChoBmgJaA9DCJojK78MJgbAlIaUUpRoFUsyaBZHQKge//6O5rh1fZQoaAZoCWgPQwhNnx1wXbH8v5SGlFKUaBVLMmgWR0CoHm8jJMg2dX2UKGgGaAloD0MITkaVYdytAcCUhpRSlGgVSzJoFkdAqCGswaisXHV9lChoBmgJaA9DCLUaEvdYGgDAlIaUUpRoFUsyaBZHQKghJmzSkTJ1fZQoaAZoCWgPQwi+TBQhdZsAwJSGlFKUaBVLMmgWR0CoIKzDGcWkdX2UKGgGaAloD0MI48RXO4oTAsCUhpRSlGgVSzJoFkdAqCAb2+PBBXV9lChoBmgJaA9DCHtmSYCaegDAlIaUUpRoFUsyaBZHQKgjSrd30PJ1fZQoaAZoCWgPQwinJVZGIx8DwJSGlFKUaBVLMmgWR0CoIsRoRIz4dX2UKGgGaAloD0MI7BLVWwMb/L+UhpRSlGgVSzJoFkdAqCJJnlGPP3V9lChoBmgJaA9DCG/yW3SylPi/lIaUUpRoFUsyaBZHQKghuXCTEBN1fZQoaAZoCWgPQwgIAfkSKpgAwJSGlFKUaBVLMmgWR0CoJL7VrhzedX2UKGgGaAloD0MIkSxgArdu/r+UhpRSlGgVSzJoFkdAqCQ3qmj0tnV9lChoBmgJaA9DCOF86liltPu/lIaUUpRoFUsyaBZHQKgjvETg2qF1fZQoaAZoCWgPQwio/6z58fcBwJSGlFKUaBVLMmgWR0CoIyq4pc5bdX2UKGgGaAloD0MIP4ulSL6S+r+UhpRSlGgVSzJoFkdAqCW087p3YHV9lChoBmgJaA9DCJgYy/RLJAjAlIaUUpRoFUsyaBZHQKglLfNzKcN1fZQoaAZoCWgPQwi21hcJbfn7v5SGlFKUaBVLMmgWR0CoJLKZML4OdX2UKGgGaAloD0MIGM3K9iEv/7+UhpRSlGgVSzJoFkdAqCQhFAmiQHV9lChoBmgJaA9DCLag98YQQAXAlIaUUpRoFUsyaBZHQKgmrdhRZU11fZQoaAZoCWgPQwisxacAGO8BwJSGlFKUaBVLMmgWR0CoJibe/Ho6dX2UKGgGaAloD0MIuvjbniARBcCUhpRSlGgVSzJoFkdAqCWrohY/3XV9lChoBmgJaA9DCB8sY0M32wPAlIaUUpRoFUsyaBZHQKglGhwEQoV1fZQoaAZoCWgPQwgH0VrR5jj+v5SGlFKUaBVLMmgWR0CoJ6ZrpJPJdX2UKGgGaAloD0MIbhea6zSSAsCUhpRSlGgVSzJoFkdAqCcfMSsbN3V9lChoBmgJaA9DCJ63sdmRagLAlIaUUpRoFUsyaBZHQKgmpBnjABV1fZQoaAZoCWgPQwjByMuaWCAAwJSGlFKUaBVLMmgWR0CoJhLQHAymdX2UKGgGaAloD0MIBrth26KM/7+UhpRSlGgVSzJoFkdAqCikmv4dqHV9lChoBmgJaA9DCLwgIjXtAgPAlIaUUpRoFUsyaBZHQKgoHW/ag291fZQoaAZoCWgPQwg+zcmLTEABwJSGlFKUaBVLMmgWR0CoJ6IESuhcdX2UKGgGaAloD0MIigJ9Ik+S/7+UhpRSlGgVSzJoFkdAqCcQiqyWzHV9lChoBmgJaA9DCEbRAx+DFfe/lIaUUpRoFUsyaBZHQKgplmhdt2t1fZQoaAZoCWgPQwiX4xWInhT/v5SGlFKUaBVLMmgWR0CoKQ8riEQHdX2UKGgGaAloD0MI4J7nTxt1CsCUhpRSlGgVSzJoFkdAqCiUCq6vq3V9lChoBmgJaA9DCI2ZRL3gMwfAlIaUUpRoFUsyaBZHQKgoAt6ol2N1fZQoaAZoCWgPQwgTfqmfNxX6v5SGlFKUaBVLMmgWR0CoKpHvttygdX2UKGgGaAloD0MI/tMNFHgnBcCUhpRSlGgVSzJoFkdAqCoKxcE/0XV9lChoBmgJaA9DCPsgy4KJPwHAlIaUUpRoFUsyaBZHQKgpj0VafSR1fZQoaAZoCWgPQwhWZd8Vwd8MwJSGlFKUaBVLMmgWR0CoKP3MINVjdX2UKGgGaAloD0MI1/Z2S3KAAsCUhpRSlGgVSzJoFkdAqCuEcyWRinV9lChoBmgJaA9DCJyiI7n8hwHAlIaUUpRoFUsyaBZHQKgq/We6I311fZQoaAZoCWgPQwimXyLeOr8FwJSGlFKUaBVLMmgWR0CoKoIaLn9vdX2UKGgGaAloD0MIf6ZetwgMBMCUhpRSlGgVSzJoFkdAqCnwis4kvHV9lChoBmgJaA9DCKIm+nyUkQLAlIaUUpRoFUsyaBZHQKgsfCeEqUh1fZQoaAZoCWgPQwghsHJoke3+v5SGlFKUaBVLMmgWR0CoK/Uq6OHWdX2UKGgGaAloD0MI8S2sG+9+EMCUhpRSlGgVSzJoFkdAqCt5pL26CnV9lChoBmgJaA9DCD1fs1w2OgXAlIaUUpRoFUsyaBZHQKgq6CIUJv51fZQoaAZoCWgPQwh1rb1PVeH7v5SGlFKUaBVLMmgWR0CoLXegDifhdX2UKGgGaAloD0MIucFQhxUOA8CUhpRSlGgVSzJoFkdAqCzwiiZfD3V9lChoBmgJaA9DCLjoZKn1HgPAlIaUUpRoFUsyaBZHQKgsdXYlIEt1fZQoaAZoCWgPQwi8d9SYELP/v5SGlFKUaBVLMmgWR0CoK+QO4G2UdX2UKGgGaAloD0MIw9hCkINyBsCUhpRSlGgVSzJoFkdAqC6MGcFyJnV9lChoBmgJaA9DCMjNcAM+/wHAlIaUUpRoFUsyaBZHQKguBVFQVKx1fZQoaAZoCWgPQwgfTIqPT4j+v5SGlFKUaBVLMmgWR0CoLYngHeJpdX2UKGgGaAloD0MIhsd+FkvRDsCUhpRSlGgVSzJoFkdAqCz4eJYT03V9lChoBmgJaA9DCNUjDW5riwDAlIaUUpRoFUsyaBZHQKgvkZtNzsB1fZQoaAZoCWgPQwhdcAZ/vzgKwJSGlFKUaBVLMmgWR0CoLwrPUrkKdX2UKGgGaAloD0MI8KSFyyps/b+UhpRSlGgVSzJoFkdAqC6Phhpg1HV9lChoBmgJaA9DCEbQmEnUCwLAlIaUUpRoFUsyaBZHQKgt/lAeJYV1fZQoaAZoCWgPQwglAtU/iGT6v5SGlFKUaBVLMmgWR0CoMJaFmFrVdX2UKGgGaAloD0MI0VlmEYptBMCUhpRSlGgVSzJoFkdAqDAPRgJC0HV9lChoBmgJaA9DCFSPNLit7QPAlIaUUpRoFUsyaBZHQKgvlBHkLhJ1fZQoaAZoCWgPQwiD+MCO/4ICwJSGlFKUaBVLMmgWR0CoLwLhR64UdX2UKGgGaAloD0MI0VeQZiyaBsCUhpRSlGgVSzJoFkdAqDGNapxWDHV9lChoBmgJaA9DCLyvyoXKHwPAlIaUUpRoFUsyaBZHQKgxBjNIK+l1fZQoaAZoCWgPQwhi9UcYBuz9v5SGlFKUaBVLMmgWR0CoMIrBTGYKdX2UKGgGaAloD0MIv2A3bFsU/L+UhpRSlGgVSzJoFkdAqC/5V6u4gHV9lChoBmgJaA9DCFCpEmVv6QHAlIaUUpRoFUsyaBZHQKgyjLCemN11fZQoaAZoCWgPQwj0+/7Ni3MGwJSGlFKUaBVLMmgWR0CoMgV4Pf8/dX2UKGgGaAloD0MIPIOG/gnOAcCUhpRSlGgVSzJoFkdAqDGJ9oexOnV9lChoBmgJaA9DCMSZX80BggDAlIaUUpRoFUsyaBZHQKgw+GxD9fl1fZQoaAZoCWgPQwhmTSzwFd0BwJSGlFKUaBVLMmgWR0CoM3hUzbeudX2UKGgGaAloD0MIweYcPBPaAsCUhpRSlGgVSzJoFkdAqDLw+lj3EnV9lChoBmgJaA9DCBnFckurwQjAlIaUUpRoFUsyaBZHQKgydX9zfaZ1fZQoaAZoCWgPQwhmFMstrQYKwJSGlFKUaBVLMmgWR0CoMeRREWqMdX2UKGgGaAloD0MIE9bG2AlvBMCUhpRSlGgVSzJoFkdAqDRt45cTrXV9lChoBmgJaA9DCIVCBBxChRDAlIaUUpRoFUsyaBZHQKgz5zOHFgl1fZQoaAZoCWgPQwgeUgyQaAIFwJSGlFKUaBVLMmgWR0CoM2v0Zm7KdX2UKGgGaAloD0MI8Wd4swYPDsCUhpRSlGgVSzJoFkdAqDLaxTsIFHV9lChoBmgJaA9DCMB4Bg39MwDAlIaUUpRoFUsyaBZHQKg1r/EwWWR1fZQoaAZoCWgPQwiinGhXIaUKwJSGlFKUaBVLMmgWR0CoNSlERaoudX2UKGgGaAloD0MIRQ2mYfgIBcCUhpRSlGgVSzJoFkdAqDSuUnogWHV9lChoBmgJaA9DCDfhXpm3qgrAlIaUUpRoFUsyaBZHQKg0HUI9kjJ1fZQoaAZoCWgPQwjEJ51IMFUMwJSGlFKUaBVLMmgWR0CoNzOJUHY6dX2UKGgGaAloD0MIvRqgNNTo+L+UhpRSlGgVSzJoFkdAqDas12q1gHV9lChoBmgJaA9DCIS9iSE52QPAlIaUUpRoFUsyaBZHQKg2Mfra/RF1fZQoaAZoCWgPQwg/c9anHJMHwJSGlFKUaBVLMmgWR0CoNaDtPYWddX2UKGgGaAloD0MIpwcFpWgFAsCUhpRSlGgVSzJoFkdAqDi55qubJHV9lChoBmgJaA9DCNPZyeAoWQPAlIaUUpRoFUsyaBZHQKg4MyWRigF1fZQoaAZoCWgPQwiKO97kt+gBwJSGlFKUaBVLMmgWR0CoN7gogFHKdX2UKGgGaAloD0MIxuHMr+ZAA8CUhpRSlGgVSzJoFkdAqDcnSOR1YHV9lChoBmgJaA9DCKpE2VvKuQHAlIaUUpRoFUsyaBZHQKg6Q6S1Vo91fZQoaAZoCWgPQwibHhSUolUDwJSGlFKUaBVLMmgWR0CoOb1aOgg6dX2UKGgGaAloD0MImKPH723aAsCUhpRSlGgVSzJoFkdAqDlC06YE4nV9lChoBmgJaA9DCKlqgqj7wALAlIaUUpRoFUsyaBZHQKg4sd/8VHp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -2.3626275743357836, "std_reward": 0.30655652892215385, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T23:25:04.360011"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f19ee48430f0aea58a0c83caf9c3de68006c7831be0c03e6d8c18f58e6bd0f9
|
3 |
size 3056
|