Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

data_seed: 42
seed: 42

datasets:
  - path: data/isaf_press_releases_ft.jsonl
    conversation: alpaca
    type: sharegpt
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/mistral/lora-out
hub_model_id: strickvl/isafpr-mistral-lora


sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: isaf_pr_ft
wandb_entity: strickvl
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

isafpr-mistral-lora

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0288

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.3462 0.0292 1 1.3536
0.1245 0.2628 9 0.0958
0.0521 0.5255 18 0.0523
0.0437 0.7883 27 0.0420
0.0312 1.0292 36 0.0383
0.0395 1.2920 45 0.0351
0.0309 1.5547 54 0.0329
0.0342 1.8175 63 0.0314
0.0334 2.0511 72 0.0318
0.0282 2.3139 81 0.0322
0.0263 2.5766 90 0.0301
0.0255 2.8394 99 0.0294
0.021 3.0803 108 0.0289
0.0236 3.3431 117 0.0289
0.0196 3.6058 126 0.0288
0.0228 3.8686 135 0.0288

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for strickvl/isafpr-mistral-lora

Adapter
(1172)
this model