|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: suarkadipa/GPT-2-finetuned-papers |
|
results: [] |
|
datasets: |
|
- CShorten/ML-ArXiv-Papers |
|
language: |
|
- en |
|
base_model: |
|
- distilbert/distilgpt2 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# suarkadipa/GPT-2-finetuned-papers |
|
|
|
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an CShorten/ML-ArXiv-Papers dataset. Based on https://python.plainenglish.io/i-fine-tuned-gpt-2-on-100k-scientific-papers-heres-the-result-903f0784fe65 |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 2.4225 |
|
- Validation Loss: 2.2164 |
|
- Epoch: 0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
# How to run in Google Colab |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
tokenizer_fromhub = AutoTokenizer.from_pretrained("suarkadipa/GPT-2-finetuned-papers") |
|
model_fromhub = AutoModelForCausalLM.from_pretrained("suarkadipa/GPT-2-finetuned-papers", from_tf=True) |
|
|
|
text_generator = pipeline( |
|
"text-generation", |
|
model=model_fromhub, |
|
tokenizer=tokenizer_fromhub, |
|
framework="tf", |
|
max_new_tokens=3000 |
|
) |
|
|
|
// change with your text |
|
test_sentence = "the role of recommender systems" |
|
res=text_generator(test_sentence)[0]["generated_text"].replace("\n", " ") |
|
res |
|
``` |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'ExponentialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 500, 'decay_rate': 0.95, 'staircase': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 2.4225 | 2.2164 | 0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- TensorFlow 2.12.0 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |