Part of Advanced NLP Project for Team Shrine - Adnan Qidwai, Harshit Karwal and Shrikara Arun.
CleanCaption is an image captioning model that forget an object from the image when generating the caption. It is a finetuned version of microsoft/Florence-2-large-ft
.
Usage:
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
import torch
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
"sudokara/CleanCaption",
trust_remote_code=True
).eval().to(device)
def forget(prompt, image_path):
image = Image.open(image_path).convert("RGB")
prompt = f"Forget from caption: {str(prompt)}".strip(' :')
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
do_sample=True,
num_beams=3,
)
return processor.decode(generated_ids[0]).replace('<s>', '').replace('</s>', '')
image_path = "image.png"
print(forget(image_path = image_path, prompt = "water"))
- Downloads last month
- 10