metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-en-US
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-AU
split: train
args: en-AU
metrics:
- name: Wer
type: wer
value: 0.1655499720826354
whisper-tiny-en-US
This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4245
- Wer Ortho: 0.1714
- Wer: 0.1655
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 5
- training_steps: 400
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
No log | 0.36 | 10 | 3.1022 | 0.3282 | 0.1960 |
No log | 0.71 | 20 | 1.6867 | 0.2399 | 0.1865 |
2.9245 | 1.07 | 30 | 0.6685 | 0.2332 | 0.1982 |
2.9245 | 1.43 | 40 | 0.4912 | 0.2017 | 0.1848 |
0.6297 | 1.79 | 50 | 0.4243 | 0.1865 | 0.1753 |
0.6297 | 2.14 | 60 | 0.3895 | 0.1801 | 0.1689 |
0.6297 | 2.5 | 70 | 0.3678 | 0.1769 | 0.1669 |
0.3045 | 2.86 | 80 | 0.3570 | 0.1746 | 0.1689 |
0.3045 | 3.21 | 90 | 0.3496 | 0.1720 | 0.1647 |
0.1949 | 3.57 | 100 | 0.3451 | 0.1746 | 0.1661 |
0.1949 | 3.93 | 110 | 0.3407 | 0.1804 | 0.1700 |
0.1949 | 4.29 | 120 | 0.3439 | 0.1778 | 0.1695 |
0.1099 | 4.64 | 130 | 0.3501 | 0.1743 | 0.1689 |
0.1099 | 5.0 | 140 | 0.3488 | 0.1737 | 0.1667 |
0.0583 | 5.36 | 150 | 0.3554 | 0.1778 | 0.1697 |
0.0583 | 5.71 | 160 | 0.3595 | 0.1708 | 0.1628 |
0.0583 | 6.07 | 170 | 0.3514 | 0.1746 | 0.1661 |
0.032 | 6.43 | 180 | 0.3672 | 0.1755 | 0.1683 |
0.032 | 6.79 | 190 | 0.3676 | 0.1676 | 0.1602 |
0.0146 | 7.14 | 200 | 0.3791 | 0.1658 | 0.1600 |
0.0146 | 7.5 | 210 | 0.3825 | 0.1676 | 0.1625 |
0.0146 | 7.86 | 220 | 0.3799 | 0.1702 | 0.1650 |
0.0084 | 8.21 | 230 | 0.3827 | 0.1702 | 0.1655 |
0.0084 | 8.57 | 240 | 0.3869 | 0.1778 | 0.1714 |
0.0043 | 8.93 | 250 | 0.3951 | 0.1740 | 0.1686 |
0.0043 | 9.29 | 260 | 0.3958 | 0.1720 | 0.1672 |
0.0043 | 9.64 | 270 | 0.3968 | 0.1758 | 0.1706 |
0.003 | 10.0 | 280 | 0.3978 | 0.1725 | 0.1672 |
0.003 | 10.36 | 290 | 0.4012 | 0.1734 | 0.1681 |
0.0023 | 10.71 | 300 | 0.4068 | 0.1728 | 0.1678 |
0.0023 | 11.07 | 310 | 0.4097 | 0.1752 | 0.1697 |
0.0023 | 11.43 | 320 | 0.4113 | 0.1746 | 0.1692 |
0.0018 | 11.79 | 330 | 0.4120 | 0.1737 | 0.1681 |
0.0018 | 12.14 | 340 | 0.4141 | 0.1740 | 0.1683 |
0.0016 | 12.5 | 350 | 0.4172 | 0.1731 | 0.1678 |
0.0016 | 12.86 | 360 | 0.4193 | 0.1740 | 0.1681 |
0.0016 | 13.21 | 370 | 0.4197 | 0.1731 | 0.1672 |
0.0014 | 13.57 | 380 | 0.4215 | 0.1731 | 0.1672 |
0.0014 | 13.93 | 390 | 0.4228 | 0.1720 | 0.1664 |
0.0012 | 14.29 | 400 | 0.4245 | 0.1714 | 0.1655 |
Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3