metadata
base_model:
- CompVis/stable-diffusion-v1-4
pipeline_tag: text-to-image
tags:
- art
The Superposition of Diffusion Models Using the It么 Density Estimator: Pipeline
This pipeline shows how to superimpose different text prompts from Stable Diffusion v1-4 based the paper The Superposition of Diffusion Models Using the It么 Density Estimator.
Example usage
from PIL import Image
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("superdiff/superdiff-sd-v1-4", custom_pipeline='pipeline', trust_remote_code=True)
image = pipeline("a flamingo", "a candy cane", seed=1, num_inference_steps=1000, batch_size=1)
image = Image.fromarray(image.cpu().numpy())
image.save("superdiff_output.png")
Arguments that can be set by user in pipeline()
:
prompt_1
: text prompt describing first concept to superimpose (e.g. "a flamingo")prompt_2
: text prompt describing second concept to superimpose (e.g. "a candy cane")seed
: seed for random noise generator for reproducibility; for non-deterministic outputs, do not provide valuenum_inference_steps
: number of denoising steps (we recommend 1000!)batch_size
: batch sizelift
: bias value that favours generation towards one prompt over the otherguidance_scale
: scale for classifier-free guidanceheight
,width
: height and width of generated images
To replicate images from Section 4.2 of the paper, you can use the following:
image = pipeline(prompt_1, prompt_2, seed=1, num_inference_steps=1000, batch_size=20, lift=0.0, guidance_scale=7.5)
Citation
BibTeX:
@article{skreta2024superposition,
title={The Superposition of Diffusion Models Using the It$\backslash$\^{} o Density Estimator},
author={Skreta, Marta and Atanackovic, Lazar and Bose, Avishek Joey and Tong, Alexander and Neklyudov, Kirill},
journal={arXiv preprint arXiv:2412.17762},
year={2024}
}