metadata
base_model:
- CompVis/stable-diffusion-v1-4
pipeline_tag: text-to-image
tags:
- art
The Superposition of Diffusion Models Using the It么 Density Estimator: Pipeline
This pipeline shows how to superimpose different text prompts from Stable Diffusion v1-4 based the paper The Superposition of Diffusion Models Using the It么 Density Estimator.
Requirements
This pipeline can be run with the following packages & versions:
PyTorch 2.5.1
Diffusers 0.32.1
Accelerate 1.2.1
Transformers 4.47.1
You can install these with:
pip install torch
pip install diffusers accelerate transformers
Example usage
from PIL import Image
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("superdiff/superdiff-sd-v1-4", custom_pipeline='pipeline', trust_remote_code=True)
output = pipeline("a flamingo", "a candy cane", seed=1, num_inference_steps=1000, batch_size=1)
image = Image.fromarray(output[0].cpu().numpy())
image.save("superdiff_output.png")
Arguments that can be set by user in pipeline()
:
prompt_1
[required]: text prompt describing first concept to superimpose (e.g. "a flamingo")prompt_2
[required]: text prompt describing second concept to superimpose (e.g. "a candy cane")seed
[optional: default=None]: seed for random noise generator for reproducibility; for non-deterministic outputs, set toNone
num_inference_steps
[optional: default=1000]: number of denoising steps (we recommend 1000!)batch_size
[optional: default=1]: batch sizelift
[optional: default=0.0]: bias value that favours generation towards one prompt over the otherguidance_scale
[optional: default=7.5]: scale for classifier-free guidanceheight
,width
[optional: default=512]: height and width of generated images
To replicate images from Section 4.2 of the paper, you can use the following:
image = pipeline(prompt_1, prompt_2, seed=1, num_inference_steps=1000, batch_size=20, lift=0.0, guidance_scale=7.5)
(Note: the runtime for a batch size of 1 on an NVIDIA A40 GPU is around 3 mins 30 sec.)
Citation
BibTeX:
@article{skreta2024superposition,
title={The Superposition of Diffusion Models Using the It$\backslash$\^{} o Density Estimator},
author={Skreta, Marta and Atanackovic, Lazar and Bose, Avishek Joey and Tong, Alexander and Neklyudov, Kirill},
journal={arXiv preprint arXiv:2412.17762},
year={2024}
}