Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: tomaszki/nous-twelve
tokenizer_type: AutoTokenizer

hub_model_id: superfriends/titos
load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: inst
datasets:
  - path: winglian/charley
    type: sharegpt
    conversation: mistral
    split: train
_test_datasets:
  - path: winglian/latest-barley
    type: sharegpt
    conversation: mistral
    split: test
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./out

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

wandb_project: relora-instruct-nous
wandb_entity: oaaic
wandb_watch:
wandb_name: fft
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_bnb_8bit
adam_beta1: 0.95
adam_beta2: 0.9
adam_epsilon: 0.0001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 0.000009
neftune_noise_alpha: 5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: True
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 20
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero1.json # multi-gpu only
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:

titos

This model is a fine-tuned version of tomaszki/nous-twelve on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.95,0.9) and epsilon=0.0001
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 2

Training results

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for superfriends/titos

Finetuned
(1)
this model