Edit model card

wav2vec2-base-finetuned-ks

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2562
  • Accuracy: 0.9869

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.4691 0.99 26 2.3935 0.2310
2.1621 1.99 52 2.0155 0.3202
1.8731 2.99 78 1.6397 0.7929
1.4521 3.99 104 1.2337 0.8940
1.101 4.99 130 0.9519 0.9393
0.9401 5.99 156 0.7686 0.975
0.7463 6.99 182 0.6338 0.9774
0.6555 7.99 208 0.5214 0.9810
0.5095 8.99 234 0.4228 0.9869
0.4152 9.99 260 0.3658 0.9857
0.3764 10.99 286 0.3311 0.9857
0.3325 11.99 312 0.2954 0.9881
0.3121 12.99 338 0.2797 0.9869
0.281 13.99 364 0.2650 0.9857
0.2627 14.99 390 0.2571 0.9869
0.2655 15.99 416 0.2562 0.9869

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.1+cu113
  • Datasets 1.14.0
  • Tokenizers 0.12.1
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.