sureshchinta commited on
Commit
905daca
·
1 Parent(s): 2636af2

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: wav2vec2-base-finetuned-ks
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-base-finetuned-ks
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2562
20
+ - Accuracy: 0.9869
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 3e-05
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 32
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 4
44
+ - total_train_batch_size: 128
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 16
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
54
+ | 2.4691 | 0.99 | 26 | 2.3935 | 0.2310 |
55
+ | 2.1621 | 1.99 | 52 | 2.0155 | 0.3202 |
56
+ | 1.8731 | 2.99 | 78 | 1.6397 | 0.7929 |
57
+ | 1.4521 | 3.99 | 104 | 1.2337 | 0.8940 |
58
+ | 1.101 | 4.99 | 130 | 0.9519 | 0.9393 |
59
+ | 0.9401 | 5.99 | 156 | 0.7686 | 0.975 |
60
+ | 0.7463 | 6.99 | 182 | 0.6338 | 0.9774 |
61
+ | 0.6555 | 7.99 | 208 | 0.5214 | 0.9810 |
62
+ | 0.5095 | 8.99 | 234 | 0.4228 | 0.9869 |
63
+ | 0.4152 | 9.99 | 260 | 0.3658 | 0.9857 |
64
+ | 0.3764 | 10.99 | 286 | 0.3311 | 0.9857 |
65
+ | 0.3325 | 11.99 | 312 | 0.2954 | 0.9881 |
66
+ | 0.3121 | 12.99 | 338 | 0.2797 | 0.9869 |
67
+ | 0.281 | 13.99 | 364 | 0.2650 | 0.9857 |
68
+ | 0.2627 | 14.99 | 390 | 0.2571 | 0.9869 |
69
+ | 0.2655 | 15.99 | 416 | 0.2562 | 0.9869 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.21.1
75
+ - Pytorch 1.12.1+cu113
76
+ - Datasets 1.14.0
77
+ - Tokenizers 0.12.1