Commit
·
905daca
1
Parent(s):
2636af2
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-base-finetuned-ks
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-base-finetuned-ks
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2562
|
20 |
+
- Accuracy: 0.9869
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 3e-05
|
40 |
+
- train_batch_size: 32
|
41 |
+
- eval_batch_size: 32
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 4
|
44 |
+
- total_train_batch_size: 128
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 16
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
+
| 2.4691 | 0.99 | 26 | 2.3935 | 0.2310 |
|
55 |
+
| 2.1621 | 1.99 | 52 | 2.0155 | 0.3202 |
|
56 |
+
| 1.8731 | 2.99 | 78 | 1.6397 | 0.7929 |
|
57 |
+
| 1.4521 | 3.99 | 104 | 1.2337 | 0.8940 |
|
58 |
+
| 1.101 | 4.99 | 130 | 0.9519 | 0.9393 |
|
59 |
+
| 0.9401 | 5.99 | 156 | 0.7686 | 0.975 |
|
60 |
+
| 0.7463 | 6.99 | 182 | 0.6338 | 0.9774 |
|
61 |
+
| 0.6555 | 7.99 | 208 | 0.5214 | 0.9810 |
|
62 |
+
| 0.5095 | 8.99 | 234 | 0.4228 | 0.9869 |
|
63 |
+
| 0.4152 | 9.99 | 260 | 0.3658 | 0.9857 |
|
64 |
+
| 0.3764 | 10.99 | 286 | 0.3311 | 0.9857 |
|
65 |
+
| 0.3325 | 11.99 | 312 | 0.2954 | 0.9881 |
|
66 |
+
| 0.3121 | 12.99 | 338 | 0.2797 | 0.9869 |
|
67 |
+
| 0.281 | 13.99 | 364 | 0.2650 | 0.9857 |
|
68 |
+
| 0.2627 | 14.99 | 390 | 0.2571 | 0.9869 |
|
69 |
+
| 0.2655 | 15.99 | 416 | 0.2562 | 0.9869 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.21.1
|
75 |
+
- Pytorch 1.12.1+cu113
|
76 |
+
- Datasets 1.14.0
|
77 |
+
- Tokenizers 0.12.1
|