search_summarize_v1 / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
7c1d732
|
raw
history blame
2.15 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - billsum
metrics:
  - rouge
base_model: t5-small
model-index:
  - name: search_summarize_v1
    results:
      - task:
          type: text2text-generation
          name: Sequence-to-sequence Language Modeling
        dataset:
          name: billsum
          type: billsum
          config: default
          split: ca_test
          args: default
        metrics:
          - type: rouge
            value: 0.1476
            name: Rouge1

search_summarize_v1

This model is a fine-tuned version of t5-small on the billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5224
  • Rouge1: 0.1476
  • Rouge2: 0.0551
  • Rougel: 0.1228
  • Rougelsum: 0.1228
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 62 2.8176 0.1281 0.0401 0.1087 0.1086 19.0
No log 2.0 124 2.5989 0.1372 0.0476 0.1138 0.1137 19.0
No log 3.0 186 2.5386 0.1464 0.0541 0.1218 0.1219 19.0
No log 4.0 248 2.5224 0.1476 0.0551 0.1228 0.1228 19.0

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3