Edit model card

xlsr-nm-nose

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1813
  • Wer: 0.5491

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 132
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.9501 6.6667 200 3.0654 1.0
2.9958 13.3333 400 2.8175 1.0
2.5806 20.0 600 2.2179 1.0
1.4475 26.6667 800 1.4198 0.7254
0.6646 33.3333 1000 1.5241 0.6384
0.3545 40.0 1200 1.5196 0.5915
0.2218 46.6667 1400 1.6719 0.5737
0.1683 53.3333 1600 1.8144 0.5737
0.1259 60.0 1800 1.8164 0.5603
0.09 66.6667 2000 2.0002 0.5424
0.0888 73.3333 2200 2.0032 0.5536
0.0589 80.0 2400 2.0328 0.5469
0.0471 86.6667 2600 2.0949 0.5603
0.0392 93.3333 2800 2.2458 0.5469
0.0317 100.0 3000 2.1813 0.5491

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
7
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for susmitabhatt/xlsr-nm-nose

Finetuned
(202)
this model