File size: 14,666 Bytes
f1e5b3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import multiprocessing
import os
import pandas as pd
import requests
from bs4 import BeautifulSoup
import re
import string
import nltk
import time
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('cmudict')
from nltk.corpus import stopwords
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import cmudict
folderpath = r'C:\Users/suwes/SentimentEngine/'
textfile_path = f"{folderpath}inputtext/"
stopword_path = f"{folderpath}StopWords/"
masterdict_path = f"{folderpath}MasterDictionary/"
def createdf():
inputxlsx = os.path.join(folderpath, "Input.xlsx")
dfxlsx = pd.read_excel(inputxlsx)
print(dfxlsx)
df_urls = dfxlsx['URL']
#print(df_urls)
return dfxlsx
df = createdf()
def extract(df):
#extracting article text from urls
def extract_urltext(url):
response = requests.get(url)#send GET req to url
soup = BeautifulSoup(response.content, 'html.parser')
article_title = soup.find('title').get_text()#find and extract tile of article
article_content = soup.find('div', class_= 'td-pb-span8 td-main-content')#find and extract article text
article_text = ''
if article_content:
for para in article_content.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6']):
article_text += para.get_text()
#print(article_title)
#print(article_text)
return article_title, article_text
#url = 'https://insights.blackcoffer.com/rising-it-cities-and-its-impact-on-the-economy-environment-infrastructure-and-city-life-by-the-year-2040/'
#extract_urltext(url)
#article_title, article_text = extract_urltext(url)
for index, row in df.iterrows():
url = row['URL']
url_id = row['URL_ID']
article_title, article_text = extract_urltext(url)
#save text to file
filename = f"{folderpath}inputtext/{url_id}.txt"
with open(filename, 'w', encoding = 'utf-8') as file:
file.write(article_title+ '\n\n' +article_text)
print(f"text saved to file {filename}")
#extract data
extract(df)
def transform(df):
#cleaning stop words
#reading stop words from stopword files
def read_stopwords(stopword_folder):
stopwords = set()
filenames = os.listdir(stopword_folder)
# process each file
for filename in filenames:
filepath = os.path.join(stopword_folder, filename)
#read stop words from each file
with open(filepath, 'r', encoding= 'utf-8', errors='ignore') as file:
stopwords.update(map(str.strip, file.readlines()))
return stopwords
#stop words
stopwords = read_stopwords(stopword_path)
#cleaning stop words from text
def clean_stopwords(text, stopwords):
#tokenize text
words = word_tokenize(text)
#remove stop words from text
cleaned_words = [word for word in words if word.lower() not in stopwords]
#reconstructing cleaned text
cleaned_text = ' '.join(cleaned_words)
return cleaned_text
#cleaning stop words from a directory/multiple files
def clean_stopwords_directory(directory, stopwords):
#list all files in directory
filenames = os.listdir(directory)
#cleaning each file
for filename in filenames:
filepath = os.path.join(directory, filename)
#read text from each file
with open(filepath, 'r', encoding='utf-8', errors='ignore') as file:
text = file.read()
#clean stop words from file text
cleaned_text = clean_stopwords(text, stopwords)
#write back cleaned text
with open(filepath, 'w', encoding= 'utf-8', errors='ignore') as file:
file.write(cleaned_text)
print(f"cleaned text from {filename}")
clean_stopwords_directory(textfile_path, stopwords)
#creating dictionary of positive and negative words
def create_posneg_dict(masterdict_path, stopwords):
poswords = set()
negwords = set()
#read positivewords file
with open(os.path.join(masterdict_path, 'positive-words.txt'), 'r', encoding='utf-8', errors='ignore') as file:
for line in file:
words = line.strip().split()
for word in words:
if word.lower() not in stopwords:
poswords.add(word.lower())
#read negativewords file
with open(os.path.join(masterdict_path, 'negative-words.txt'), 'r', encoding='utf-8', errors='ignore') as file:
for line in file:
words = line.strip().split()
for word in words:
if word.lower() not in stopwords:
negwords.add(word.lower())
return poswords, negwords
positivewords, negativewords = create_posneg_dict(masterdict_path, stopwords)
#print(positivewords)
#print(negativewords)
return stopwords, positivewords, negativewords
#cleaning/transforming data
stopwords, positivewords, negativewords = transform(df)
#load data
result_df = pd.DataFrame()
def loadoutput(folderpath, result_df):
exceloutfilepath = f"{folderpath}Output.xlsx"
result_df.to_excel(exceloutfilepath, index=False)
print(f"output file saved to {exceloutfilepath}")
print(f"analysis time: {int((time.time() - starttime)//3600)} hours {int(((time.time() - starttime)%3600)//60)} minutes {int((time.time() - starttime)%60)} seconds")
#process text files
def runengine(df, stopwords, files_subset, dflist):
#sentimental analysis
#calculating variables
def calculate_positivescore(words, positivewords):
positivescore = sum(1 for word in words if word.lower() in positivewords)
return positivescore
def calculate_negativescore(words, negativewords):
negativescore = (sum(-1 for word in words if word.lower() in negativewords))*(-1)
return negativescore
#analysis of readability
def calc_readibility(words, sentences):
#calculate average length of sentences
avg_sentencelen = len(words)/len(sentences) if sentences else 0
#calculate % of complex words
complexwords = [word for word in words if syllable_count(word)>2]
percent_complexwords = len(complexwords)/len(words)*100 if words else 0
#calculate fog index
fog_index = 0.4*(avg_sentencelen + percent_complexwords)
return avg_sentencelen, percent_complexwords, fog_index
#average words per text
def avg_wordspersentence(words, sentences):
if len(sentences) > 0:
averagewords = len(words)/len(sentences)
return averagewords
else: return 0
#complex word count
def syllable_count(word):
d = cmudict.dict()
if word.lower() in d:
return [len(list(y for y in x if y[-1].isdigit())) for x in d[word.lower()]][0]
else:
return 0
def complexwords_count(words):
complexwords = [word for word in words if syllable_count(word)>2]
return len(complexwords)
#clean words count
def cleanwords_count(words, stopwords):
punctuations = set(string.punctuation)
cleaned_words = [word.lower() for word in words if word.lower() not in stopwords and word.lower() not in punctuations]
return len(cleaned_words)
#syllable count per word
#vowel syllable count per word
def vowel_syllable(word):
vowels = 'aeiouy'
count = 0
endings = 'es', 'ed', 'e'
#exceptions for word with endings
word = word.lower().strip()
if word.endswith(endings):
word = word[:-2]#subtract 2 characters from ending of word
elif word.emdswith('le'):
word = word[:-2]
endings = ''
elif word.endswith('ing'):
word = word[:-3]#subtract 3 characters from ending of word
endings = ''
#counting vowels in word
if len(word)<=3:
return 1
for index, letter in enumerate(word):
if letter in vowels and (index ==0 or word[index -1] not in vowels):
count +=1
#handling y as vowel at end of word
if word.endswith('y') and word[-2] not in vowels:
count +=1
return count
#per text
def vowel_syllable_perword(words):
total_syllables = sum(syllable_count(word) for word in words)
return total_syllables
#personal pronouns
def count_pronouns(text):
pattern = r'\b(?:I|we|my|ours|us)\b'#define regex pattern for matching pronouns
#find all matches
matches = re.findall(pattern, text, flags=re.IGNORECASE)
#excluse 'US' when reffering to USA
matches_fin = [matches for match in matches if match.lower() != 'us']
countpron = len(matches_fin)#count of pronouns
return countpron
#average word length
def calc_avg_wordlength(words):
total_chars = sum(len(word) for word in words)#calculate total charactes in text
total_words = len(words)
if total_words != 0:
avg_wordlength = total_chars/total_words
else: avg_wordlength = 0
return avg_wordlength
def appendtodf(url_idkey, calc_values, process_df):
rowindex = df[df['URL_ID'] == url_idkey].index #get index of row where url_id = url_idkey
if not rowindex.empty:
idx_toupdate = rowindex[0]
# Create a new row with the columns from the original DataFrame df
new_row = pd.DataFrame(columns=process_df.columns)
# Assign the existing values from df to the new row at the corresponding index
new_row.loc[0, process_df.columns[:2]] = df.loc[idx_toupdate, ['URL_ID', 'URL']]
# Update the new row with the calculated values
for col, value in calc_values.items():
new_row[col] = value
# Add the new row to the process_df
process_df = process_df._append(new_row, ignore_index=True)
print(f"Result updated for {url_idkey}")
else:
print(f"!not found {url_idkey}")
return process_df
#process data/ processing each file
process_df = pd.DataFrame(columns=df.columns)
for filename in files_subset:
filepath = os.path.join(textfile_path, filename)
#to update values for each URL_ID
url_idkey = re.search(r'blackassign\d{4}', filepath).group()
if os.path.isfile(filepath):
with open(filepath, 'r', encoding='utf-8', errors='ignore') as file:
text = file.read()
#tokenize text
words = word_tokenize(text)
sentences = sent_tokenize(text)
totalwords = len(words)
#calculate positive score
positive_score = calculate_positivescore(words, positivewords)
print(f"{filename} positive socre: {positive_score}")
#calculate negative score
negative_score = calculate_negativescore(words, negativewords)
print(f"{filename} negative socre: {negative_score}")
#calculate polarity score
polarity_score = (positive_score - negative_score)/((positive_score+negative_score)+0.000001)
print(f"{filename} polarity socre: {polarity_score}")
#calculate subjective score
subjectivity_score = (positive_score+negative_score)/((totalwords)+0.000001)
print(f"{filename} subjectivity socre: {subjectivity_score}")
#readibility analysis
avg_sentencelen, percent_complexwords, fog_index = calc_readibility(words, sentences)
print(f"{filename} avg sentencelength: {avg_sentencelen}")
#load(df, "AVG SENTENCE LENGTH",avg_sentencelen, url_idkey)
print(f"{filename} percentage of complex words: {percent_complexwords}")
#load(df, "PERCENTAGE OF COMPLEX WORDS",percent_complexwords, url_idkey)
print(f"{filename} Fog Index: {fog_index}")
#average number of words per sentence
avg_wordper_sentence = avg_wordspersentence(words, sentences)
print(f"{filename} avg words per sentence: {avg_wordper_sentence}")
#complex word count
complexword_count = complexwords_count(words)
print(f"{filename} complex words count: {complexword_count}")
#word count
cleanword_count = cleanwords_count(words, stopwords)
print(f"{filename} clean words count: {cleanword_count}")
#syllable count per word
syllablecount_perword = vowel_syllable_perword(words)
print(f"{filename} syllable count per word: {syllablecount_perword}")
#personal pronouns
pronouns_count = count_pronouns(text)
print(f"{filename} personal pronouns count: {pronouns_count}")
#avg word length
avg_wordlength = calc_avg_wordlength(words)
print(f"{filename} avg word length: {avg_wordlength}")
else: print(f"df not updated for {filename}!")
calc_values = {
"POSITIVE SCORE": positive_score,
"NEGATIVE SCORE": negative_score,
"POLARITY SCORE": polarity_score,
"SUBJECTIVITY SCORE": subjectivity_score,
"AVG SENTENCE LENGTH": avg_sentencelen,
"PERCENTAGE OF COMPLEX WORDS": percent_complexwords,
"FOG INDEX": fog_index,
"AVG NUMBER OF WORDS PER SENTENCE": avg_wordper_sentence,
"COMPLEX WORD COUNT": complexword_count,
"WORD COUNT": cleanword_count,
"SYLLABLE PER WORD": syllablecount_perword,
"PERSONAL PRONOUNS": pronouns_count,
"AVG WORD LENGTH": avg_wordlength
}
try:
process_df = appendtodf(url_idkey,calc_values, process_df)
except Exception as e:
print(e)
print(process_df)
dflist.append(process_df)
#runengine(df, stopwords, files_subset, dflist)
if __name__ == '__main__':
starttime = time.time()
files_toprocess = os.listdir(textfile_path)
#files_toprocess = [r'blackassign0049.txt', r'blackassign0099.txt', r'blackassign0100.txt']
num_processes = multiprocessing.cpu_count()
print(str(num_processes)+ " CPUs")
files_perprocess = len(files_toprocess) // num_processes
print(files_perprocess)
processes = []
# Create a Manager object to share a list among processes
manager = multiprocessing.Manager()
dflist = manager.list()
for i in range(num_processes):
try:
start = i*files_perprocess
end = (i+1)*files_perprocess if i != num_processes-1 else len(files_toprocess)
files_subset = files_toprocess[start:end]
p = multiprocessing.Process(target=runengine, args =(df, stopwords, files_subset, dflist))
processes.append(p)
p.start()
except Exception as e:
print(e)
print("waiting for all processes to end...")
for i in processes:
print(i)
for process in processes:
try:
process.join()
except Exception as e:
print(e)
for i in processes:
print(i)
print(str(len(dflist))+" result dataframes obtained.")
result_df = pd.concat(dflist, ignore_index=True)
result_df = result_df.sort_values(by='URL_ID')
print(result_df)
loadoutput(folderpath, result_df)
|