suwesh's picture
Upload 2 files
f1e5b3d verified
raw
history blame
14.7 kB
import multiprocessing
import os
import pandas as pd
import requests
from bs4 import BeautifulSoup
import re
import string
import nltk
import time
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('cmudict')
from nltk.corpus import stopwords
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import cmudict
folderpath = r'C:\Users/suwes/SentimentEngine/'
textfile_path = f"{folderpath}inputtext/"
stopword_path = f"{folderpath}StopWords/"
masterdict_path = f"{folderpath}MasterDictionary/"
def createdf():
inputxlsx = os.path.join(folderpath, "Input.xlsx")
dfxlsx = pd.read_excel(inputxlsx)
print(dfxlsx)
df_urls = dfxlsx['URL']
#print(df_urls)
return dfxlsx
df = createdf()
def extract(df):
#extracting article text from urls
def extract_urltext(url):
response = requests.get(url)#send GET req to url
soup = BeautifulSoup(response.content, 'html.parser')
article_title = soup.find('title').get_text()#find and extract tile of article
article_content = soup.find('div', class_= 'td-pb-span8 td-main-content')#find and extract article text
article_text = ''
if article_content:
for para in article_content.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6']):
article_text += para.get_text()
#print(article_title)
#print(article_text)
return article_title, article_text
#url = 'https://insights.blackcoffer.com/rising-it-cities-and-its-impact-on-the-economy-environment-infrastructure-and-city-life-by-the-year-2040/'
#extract_urltext(url)
#article_title, article_text = extract_urltext(url)
for index, row in df.iterrows():
url = row['URL']
url_id = row['URL_ID']
article_title, article_text = extract_urltext(url)
#save text to file
filename = f"{folderpath}inputtext/{url_id}.txt"
with open(filename, 'w', encoding = 'utf-8') as file:
file.write(article_title+ '\n\n' +article_text)
print(f"text saved to file {filename}")
#extract data
extract(df)
def transform(df):
#cleaning stop words
#reading stop words from stopword files
def read_stopwords(stopword_folder):
stopwords = set()
filenames = os.listdir(stopword_folder)
# process each file
for filename in filenames:
filepath = os.path.join(stopword_folder, filename)
#read stop words from each file
with open(filepath, 'r', encoding= 'utf-8', errors='ignore') as file:
stopwords.update(map(str.strip, file.readlines()))
return stopwords
#stop words
stopwords = read_stopwords(stopword_path)
#cleaning stop words from text
def clean_stopwords(text, stopwords):
#tokenize text
words = word_tokenize(text)
#remove stop words from text
cleaned_words = [word for word in words if word.lower() not in stopwords]
#reconstructing cleaned text
cleaned_text = ' '.join(cleaned_words)
return cleaned_text
#cleaning stop words from a directory/multiple files
def clean_stopwords_directory(directory, stopwords):
#list all files in directory
filenames = os.listdir(directory)
#cleaning each file
for filename in filenames:
filepath = os.path.join(directory, filename)
#read text from each file
with open(filepath, 'r', encoding='utf-8', errors='ignore') as file:
text = file.read()
#clean stop words from file text
cleaned_text = clean_stopwords(text, stopwords)
#write back cleaned text
with open(filepath, 'w', encoding= 'utf-8', errors='ignore') as file:
file.write(cleaned_text)
print(f"cleaned text from {filename}")
clean_stopwords_directory(textfile_path, stopwords)
#creating dictionary of positive and negative words
def create_posneg_dict(masterdict_path, stopwords):
poswords = set()
negwords = set()
#read positivewords file
with open(os.path.join(masterdict_path, 'positive-words.txt'), 'r', encoding='utf-8', errors='ignore') as file:
for line in file:
words = line.strip().split()
for word in words:
if word.lower() not in stopwords:
poswords.add(word.lower())
#read negativewords file
with open(os.path.join(masterdict_path, 'negative-words.txt'), 'r', encoding='utf-8', errors='ignore') as file:
for line in file:
words = line.strip().split()
for word in words:
if word.lower() not in stopwords:
negwords.add(word.lower())
return poswords, negwords
positivewords, negativewords = create_posneg_dict(masterdict_path, stopwords)
#print(positivewords)
#print(negativewords)
return stopwords, positivewords, negativewords
#cleaning/transforming data
stopwords, positivewords, negativewords = transform(df)
#load data
result_df = pd.DataFrame()
def loadoutput(folderpath, result_df):
exceloutfilepath = f"{folderpath}Output.xlsx"
result_df.to_excel(exceloutfilepath, index=False)
print(f"output file saved to {exceloutfilepath}")
print(f"analysis time: {int((time.time() - starttime)//3600)} hours {int(((time.time() - starttime)%3600)//60)} minutes {int((time.time() - starttime)%60)} seconds")
#process text files
def runengine(df, stopwords, files_subset, dflist):
#sentimental analysis
#calculating variables
def calculate_positivescore(words, positivewords):
positivescore = sum(1 for word in words if word.lower() in positivewords)
return positivescore
def calculate_negativescore(words, negativewords):
negativescore = (sum(-1 for word in words if word.lower() in negativewords))*(-1)
return negativescore
#analysis of readability
def calc_readibility(words, sentences):
#calculate average length of sentences
avg_sentencelen = len(words)/len(sentences) if sentences else 0
#calculate % of complex words
complexwords = [word for word in words if syllable_count(word)>2]
percent_complexwords = len(complexwords)/len(words)*100 if words else 0
#calculate fog index
fog_index = 0.4*(avg_sentencelen + percent_complexwords)
return avg_sentencelen, percent_complexwords, fog_index
#average words per text
def avg_wordspersentence(words, sentences):
if len(sentences) > 0:
averagewords = len(words)/len(sentences)
return averagewords
else: return 0
#complex word count
def syllable_count(word):
d = cmudict.dict()
if word.lower() in d:
return [len(list(y for y in x if y[-1].isdigit())) for x in d[word.lower()]][0]
else:
return 0
def complexwords_count(words):
complexwords = [word for word in words if syllable_count(word)>2]
return len(complexwords)
#clean words count
def cleanwords_count(words, stopwords):
punctuations = set(string.punctuation)
cleaned_words = [word.lower() for word in words if word.lower() not in stopwords and word.lower() not in punctuations]
return len(cleaned_words)
#syllable count per word
#vowel syllable count per word
def vowel_syllable(word):
vowels = 'aeiouy'
count = 0
endings = 'es', 'ed', 'e'
#exceptions for word with endings
word = word.lower().strip()
if word.endswith(endings):
word = word[:-2]#subtract 2 characters from ending of word
elif word.emdswith('le'):
word = word[:-2]
endings = ''
elif word.endswith('ing'):
word = word[:-3]#subtract 3 characters from ending of word
endings = ''
#counting vowels in word
if len(word)<=3:
return 1
for index, letter in enumerate(word):
if letter in vowels and (index ==0 or word[index -1] not in vowels):
count +=1
#handling y as vowel at end of word
if word.endswith('y') and word[-2] not in vowels:
count +=1
return count
#per text
def vowel_syllable_perword(words):
total_syllables = sum(syllable_count(word) for word in words)
return total_syllables
#personal pronouns
def count_pronouns(text):
pattern = r'\b(?:I|we|my|ours|us)\b'#define regex pattern for matching pronouns
#find all matches
matches = re.findall(pattern, text, flags=re.IGNORECASE)
#excluse 'US' when reffering to USA
matches_fin = [matches for match in matches if match.lower() != 'us']
countpron = len(matches_fin)#count of pronouns
return countpron
#average word length
def calc_avg_wordlength(words):
total_chars = sum(len(word) for word in words)#calculate total charactes in text
total_words = len(words)
if total_words != 0:
avg_wordlength = total_chars/total_words
else: avg_wordlength = 0
return avg_wordlength
def appendtodf(url_idkey, calc_values, process_df):
rowindex = df[df['URL_ID'] == url_idkey].index #get index of row where url_id = url_idkey
if not rowindex.empty:
idx_toupdate = rowindex[0]
# Create a new row with the columns from the original DataFrame df
new_row = pd.DataFrame(columns=process_df.columns)
# Assign the existing values from df to the new row at the corresponding index
new_row.loc[0, process_df.columns[:2]] = df.loc[idx_toupdate, ['URL_ID', 'URL']]
# Update the new row with the calculated values
for col, value in calc_values.items():
new_row[col] = value
# Add the new row to the process_df
process_df = process_df._append(new_row, ignore_index=True)
print(f"Result updated for {url_idkey}")
else:
print(f"!not found {url_idkey}")
return process_df
#process data/ processing each file
process_df = pd.DataFrame(columns=df.columns)
for filename in files_subset:
filepath = os.path.join(textfile_path, filename)
#to update values for each URL_ID
url_idkey = re.search(r'blackassign\d{4}', filepath).group()
if os.path.isfile(filepath):
with open(filepath, 'r', encoding='utf-8', errors='ignore') as file:
text = file.read()
#tokenize text
words = word_tokenize(text)
sentences = sent_tokenize(text)
totalwords = len(words)
#calculate positive score
positive_score = calculate_positivescore(words, positivewords)
print(f"{filename} positive socre: {positive_score}")
#calculate negative score
negative_score = calculate_negativescore(words, negativewords)
print(f"{filename} negative socre: {negative_score}")
#calculate polarity score
polarity_score = (positive_score - negative_score)/((positive_score+negative_score)+0.000001)
print(f"{filename} polarity socre: {polarity_score}")
#calculate subjective score
subjectivity_score = (positive_score+negative_score)/((totalwords)+0.000001)
print(f"{filename} subjectivity socre: {subjectivity_score}")
#readibility analysis
avg_sentencelen, percent_complexwords, fog_index = calc_readibility(words, sentences)
print(f"{filename} avg sentencelength: {avg_sentencelen}")
#load(df, "AVG SENTENCE LENGTH",avg_sentencelen, url_idkey)
print(f"{filename} percentage of complex words: {percent_complexwords}")
#load(df, "PERCENTAGE OF COMPLEX WORDS",percent_complexwords, url_idkey)
print(f"{filename} Fog Index: {fog_index}")
#average number of words per sentence
avg_wordper_sentence = avg_wordspersentence(words, sentences)
print(f"{filename} avg words per sentence: {avg_wordper_sentence}")
#complex word count
complexword_count = complexwords_count(words)
print(f"{filename} complex words count: {complexword_count}")
#word count
cleanword_count = cleanwords_count(words, stopwords)
print(f"{filename} clean words count: {cleanword_count}")
#syllable count per word
syllablecount_perword = vowel_syllable_perword(words)
print(f"{filename} syllable count per word: {syllablecount_perword}")
#personal pronouns
pronouns_count = count_pronouns(text)
print(f"{filename} personal pronouns count: {pronouns_count}")
#avg word length
avg_wordlength = calc_avg_wordlength(words)
print(f"{filename} avg word length: {avg_wordlength}")
else: print(f"df not updated for {filename}!")
calc_values = {
"POSITIVE SCORE": positive_score,
"NEGATIVE SCORE": negative_score,
"POLARITY SCORE": polarity_score,
"SUBJECTIVITY SCORE": subjectivity_score,
"AVG SENTENCE LENGTH": avg_sentencelen,
"PERCENTAGE OF COMPLEX WORDS": percent_complexwords,
"FOG INDEX": fog_index,
"AVG NUMBER OF WORDS PER SENTENCE": avg_wordper_sentence,
"COMPLEX WORD COUNT": complexword_count,
"WORD COUNT": cleanword_count,
"SYLLABLE PER WORD": syllablecount_perword,
"PERSONAL PRONOUNS": pronouns_count,
"AVG WORD LENGTH": avg_wordlength
}
try:
process_df = appendtodf(url_idkey,calc_values, process_df)
except Exception as e:
print(e)
print(process_df)
dflist.append(process_df)
#runengine(df, stopwords, files_subset, dflist)
if __name__ == '__main__':
starttime = time.time()
files_toprocess = os.listdir(textfile_path)
#files_toprocess = [r'blackassign0049.txt', r'blackassign0099.txt', r'blackassign0100.txt']
num_processes = multiprocessing.cpu_count()
print(str(num_processes)+ " CPUs")
files_perprocess = len(files_toprocess) // num_processes
print(files_perprocess)
processes = []
# Create a Manager object to share a list among processes
manager = multiprocessing.Manager()
dflist = manager.list()
for i in range(num_processes):
try:
start = i*files_perprocess
end = (i+1)*files_perprocess if i != num_processes-1 else len(files_toprocess)
files_subset = files_toprocess[start:end]
p = multiprocessing.Process(target=runengine, args =(df, stopwords, files_subset, dflist))
processes.append(p)
p.start()
except Exception as e:
print(e)
print("waiting for all processes to end...")
for i in processes:
print(i)
for process in processes:
try:
process.join()
except Exception as e:
print(e)
for i in processes:
print(i)
print(str(len(dflist))+" result dataframes obtained.")
result_df = pd.concat(dflist, ignore_index=True)
result_df = result_df.sort_values(by='URL_ID')
print(result_df)
loadoutput(folderpath, result_df)