|
--- |
|
license: mit |
|
base_model: xlnet-base-cased |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: svenbl80/xlnet-base-cased-finetuned-mnli |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# svenbl80/xlnet-base-cased-finetuned-mnli |
|
|
|
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0221 |
|
- Validation Loss: 0.7391 |
|
- Train Accuracy: 0.8677 |
|
- Epoch: 9 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 245430, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Accuracy | Epoch | |
|
|:----------:|:---------------:|:--------------:|:-----:| |
|
| 0.4828 | 0.4066 | 0.8426 | 0 | |
|
| 0.3364 | 0.3842 | 0.8598 | 1 | |
|
| 0.2419 | 0.3913 | 0.8672 | 2 | |
|
| 0.1713 | 0.4653 | 0.8624 | 3 | |
|
| 0.1212 | 0.5090 | 0.8625 | 4 | |
|
| 0.0857 | 0.5733 | 0.8684 | 5 | |
|
| 0.0620 | 0.6176 | 0.8635 | 6 | |
|
| 0.0435 | 0.6781 | 0.8670 | 7 | |
|
| 0.0309 | 0.7102 | 0.8668 | 8 | |
|
| 0.0221 | 0.7391 | 0.8677 | 9 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- TensorFlow 2.9.1 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|