svjack's picture
Upload 1392 files
43b7e92 verified
|
raw
history blame
21.7 kB
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Diffusersμ—μ„œμ˜ PyTorch 2.0 가속화 지원
`0.13.0` 버전뢀터 DiffusersλŠ” [PyTorch 2.0](https://pytorch.org/get-started/pytorch-2.0/)μ—μ„œμ˜ μ΅œμ‹  μ΅œμ ν™”λ₯Ό μ§€μ›ν•©λ‹ˆλ‹€. μ΄λŠ” λ‹€μŒμ„ ν¬ν•¨λ©λ‹ˆλ‹€.
1. momory-efficient attention을 μ‚¬μš©ν•œ κ°€μ†ν™”λœ 트랜슀포머 지원 - `xformers`같은 좔가적인 dependencies ν•„μš” μ—†μŒ
2. μΆ”κ°€ μ„±λŠ₯ ν–₯상을 μœ„ν•œ κ°œλ³„ λͺ¨λΈμ— λŒ€ν•œ 컴파일 κΈ°λŠ₯ [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) 지원
## μ„€μΉ˜
κ°€μ†ν™”λœ μ–΄ν…μ…˜ κ΅¬ν˜„κ³Ό 및 `torch.compile()`을 μ‚¬μš©ν•˜κΈ° μœ„ν•΄, pipμ—μ„œ μ΅œμ‹  λ²„μ „μ˜ PyTorch 2.0을 μ„€μΉ˜λ˜μ–΄ 있고 diffusers 0.13.0. 버전 이상인지 ν™•μΈν•˜μ„Έμš”. μ•„λž˜ μ„€λͺ…λœ 바와 같이, PyTorch 2.0이 ν™œμ„±ν™”λ˜μ–΄ μžˆμ„ λ•Œ diffusersλŠ” μ΅œμ ν™”λœ μ–΄ν…μ…˜ ν”„λ‘œμ„Έμ„œ([`AttnProcessor2_0`](https://github.com/huggingface/diffusers/blob/1a5797c6d4491a879ea5285c4efc377664e0332d/src/diffusers/models/attention_processor.py#L798))λ₯Ό μ‚¬μš©ν•©λ‹ˆλ‹€.
```bash
pip install --upgrade torch diffusers
```
## κ°€μ†ν™”λœ νŠΈλžœμŠ€ν¬λ¨Έμ™€ `torch.compile` μ‚¬μš©ν•˜κΈ°.
1. **κ°€μ†ν™”λœ 트랜슀포머 κ΅¬ν˜„**
PyTorch 2.0μ—λŠ” [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention) ν•¨μˆ˜λ₯Ό 톡해 μ΅œμ ν™”λœ memory-efficient attention의 κ΅¬ν˜„μ΄ ν¬ν•¨λ˜μ–΄ μžˆμŠ΅λ‹ˆλ‹€. μ΄λŠ” μž…λ ₯ 및 GPU μœ ν˜•μ— 따라 μ—¬λŸ¬ μ΅œμ ν™”λ₯Ό μžλ™μœΌλ‘œ ν™œμ„±ν™”ν•©λ‹ˆλ‹€. μ΄λŠ” [xFormers](https://github.com/facebookresearch/xformers)의 `memory_efficient_attention`κ³Ό μœ μ‚¬ν•˜μ§€λ§Œ 기본적으둜 PyTorch에 λ‚΄μž₯λ˜μ–΄ μžˆμŠ΅λ‹ˆλ‹€.
μ΄λŸ¬ν•œ μ΅œμ ν™”λŠ” PyTorch 2.0이 μ„€μΉ˜λ˜μ–΄ 있고 `torch.nn.functional.scaled_dot_product_attention`을 μ‚¬μš©ν•  수 μžˆλŠ” 경우 Diffusersμ—μ„œ 기본적으둜 ν™œμ„±ν™”λ©λ‹ˆλ‹€. 이λ₯Ό μ‚¬μš©ν•˜λ €λ©΄ `torch 2.0`을 μ„€μΉ˜ν•˜κ³  νŒŒμ΄ν”„λΌμΈμ„ μ‚¬μš©ν•˜κΈ°λ§Œ ν•˜λ©΄ λ©λ‹ˆλ‹€. 예λ₯Ό λ“€μ–΄:
```Python
import torch
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
```
이λ₯Ό λͺ…μ‹œμ μœΌλ‘œ ν™œμ„±ν™”ν•˜λ €λ©΄(ν•„μˆ˜λŠ” μ•„λ‹˜) μ•„λž˜μ™€ 같이 μˆ˜ν–‰ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
```diff
import torch
from diffusers import DiffusionPipeline
+ from diffusers.models.attention_processor import AttnProcessor2_0
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
+ pipe.unet.set_attn_processor(AttnProcessor2_0())
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
```
이 μ‹€ν–‰ 과정은 `xFormers`만큼 λΉ λ₯΄κ³  λ©”λͺ¨λ¦¬μ μœΌλ‘œ νš¨μœ¨μ μ΄μ–΄μ•Ό ν•©λ‹ˆλ‹€. μžμ„Έν•œ λ‚΄μš©μ€ [벀치마크](#benchmark)μ—μ„œ ν™•μΈν•˜μ„Έμš”.
νŒŒμ΄ν”„λΌμΈμ„ 보닀 deterministic으둜 λ§Œλ“€κ±°λ‚˜ 파인 νŠœλ‹λœ λͺ¨λΈμ„ [Core ML](https://huggingface.co/docs/diffusers/v0.16.0/en/optimization/coreml#how-to-run-stable-diffusion-with-core-ml)κ³Ό 같은 λ‹€λ₯Έ ν˜•μ‹μœΌλ‘œ λ³€ν™˜ν•΄μ•Ό ν•˜λŠ” 경우 바닐라 μ–΄ν…μ…˜ ν”„λ‘œμ„Έμ„œ ([`AttnProcessor`](https://github.com/huggingface/diffusers/blob/1a5797c6d4491a879ea5285c4efc377664e0332d/src/diffusers/models/attention_processor.py#L402))둜 되돌릴 수 μžˆμŠ΅λ‹ˆλ‹€. 일반 μ–΄ν…μ…˜ ν”„λ‘œμ„Έμ„œλ₯Ό μ‚¬μš©ν•˜λ €λ©΄ [`~diffusers.UNet2DConditionModel.set_default_attn_processor`] ν•¨μˆ˜λ₯Ό μ‚¬μš©ν•  수 μžˆμŠ΅λ‹ˆλ‹€:
```Python
import torch
from diffusers import DiffusionPipeline
from diffusers.models.attention_processor import AttnProcessor
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipe.unet.set_default_attn_processor()
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
```
2. **torch.compile**
좔가적인 속도 ν–₯상을 μœ„ν•΄ μƒˆλ‘œμš΄ `torch.compile` κΈ°λŠ₯을 μ‚¬μš©ν•  수 μžˆμŠ΅λ‹ˆλ‹€. νŒŒμ΄ν”„λΌμΈμ˜ UNet은 일반적으둜 계산 λΉ„μš©μ΄ κ°€μž₯ 크기 λ•Œλ¬Έμ— λ‚˜λ¨Έμ§€ ν•˜μœ„ λͺ¨λΈ(ν…μŠ€νŠΈ 인코더와 VAE)은 κ·ΈλŒ€λ‘œ 두고 `unet`을 `torch.compile`둜 λž˜ν•‘ν•©λ‹ˆλ‹€. μžμ„Έν•œ λ‚΄μš©κ³Ό λ‹€λ₯Έ μ˜΅μ…˜μ€ [torch 컴파일 λ¬Έμ„œ](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html)λ₯Ό μ°Έμ‘°ν•˜μ„Έμš”.
```python
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
images = pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images
```
GPU μœ ν˜•μ— 따라 `compile()`은 κ°€μ†ν™”λœ 트랜슀포머 μ΅œμ ν™”λ₯Ό 톡해 **5% - 300%**의 _μΆ”κ°€ μ„±λŠ₯ ν–₯상_을 얻을 수 μžˆμŠ΅λ‹ˆλ‹€. κ·ΈλŸ¬λ‚˜ μ»΄νŒŒμΌμ€ Ampere(A100, 3090), Ada(4090) 및 Hopper(H100)와 같은 μ΅œμ‹  GPU μ•„ν‚€ν…μ²˜μ—μ„œ 더 λ§Žμ€ μ„±λŠ₯ ν–₯상을 κ°€μ Έμ˜¬ 수 μžˆμŒμ„ μ°Έκ³ ν•˜μ„Έμš”.
μ»΄νŒŒμΌμ€ μ™„λ£Œν•˜λŠ” 데 μ•½κ°„μ˜ μ‹œκ°„μ΄ κ±Έλ¦¬λ―€λ‘œ, νŒŒμ΄ν”„λΌμΈμ„ ν•œ 번 μ€€λΉ„ν•œ λ‹€μŒ λ™μΌν•œ μœ ν˜•μ˜ μΆ”λ‘  μž‘μ—…μ„ μ—¬λŸ¬ 번 μˆ˜ν–‰ν•΄μ•Ό ν•˜λŠ” 상황에 κ°€μž₯ μ ν•©ν•©λ‹ˆλ‹€. λ‹€λ₯Έ 이미지 ν¬κΈ°μ—μ„œ 컴파일된 νŒŒμ΄ν”„λΌμΈμ„ ν˜ΈμΆœν•˜λ©΄ μ‹œκ°„μ  λΉ„μš©μ΄ 많이 λ“€ 수 μžˆλŠ” 컴파일 μž‘μ—…μ΄ λ‹€μ‹œ νŠΈλ¦¬κ±°λ©λ‹ˆλ‹€.
## 벀치마크
PyTorch 2.0의 효율적인 μ–΄ν…μ…˜ κ΅¬ν˜„κ³Ό `torch.compile`을 μ‚¬μš©ν•˜μ—¬ κ°€μž₯ 많이 μ‚¬μš©λ˜λŠ” 5개의 νŒŒμ΄ν”„λΌμΈμ— λŒ€ν•΄ λ‹€μ–‘ν•œ GPU와 배치 크기에 걸쳐 포괄적인 벀치마크λ₯Ό μˆ˜ν–‰ν–ˆμŠ΅λ‹ˆλ‹€. μ—¬κΈ°μ„œλŠ” [`torch.compile()`이 졜적으둜 ν™œμš©λ˜λ„λ‘ ν•˜λŠ”](https://github.com/huggingface/diffusers/pull/3313) `diffusers 0.17.0.dev0`을 μ‚¬μš©ν–ˆμŠ΅λ‹ˆλ‹€.
### λ²€μΉ˜λ§ˆν‚Ή μ½”λ“œ
#### Stable Diffusion text-to-image
```python
from diffusers import DiffusionPipeline
import torch
path = "runwayml/stable-diffusion-v1-5"
run_compile = True # Set True / False
pipe = DiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
images = pipe(prompt=prompt).images
```
#### Stable Diffusion image-to-image
```python
from diffusers import StableDiffusionImg2ImgPipeline
import requests
import torch
from PIL import Image
from io import BytesIO
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
path = "runwayml/stable-diffusion-v1-5"
run_compile = True # Set True / False
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
image = pipe(prompt=prompt, image=init_image).images[0]
```
#### Stable Diffusion - inpainting
```python
from diffusers import StableDiffusionInpaintPipeline
import requests
import torch
from PIL import Image
from io import BytesIO
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
def download_image(url):
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
path = "runwayml/stable-diffusion-inpainting"
run_compile = True # Set True / False
pipe = StableDiffusionInpaintPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
```
#### ControlNet
```python
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import requests
import torch
from PIL import Image
from io import BytesIO
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
path = "runwayml/stable-diffusion-v1-5"
run_compile = True # Set True / False
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
path, controlnet=controlnet, torch_dtype=torch.float16
)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
pipe.controlnet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
image = pipe(prompt=prompt, image=init_image).images[0]
```
#### IF text-to-image + upscaling
```python
from diffusers import DiffusionPipeline
import torch
run_compile = True # Set True / False
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16)
pipe.to("cuda")
pipe_2 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16)
pipe_2.to("cuda")
pipe_3 = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16)
pipe_3.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
pipe_2.unet.to(memory_format=torch.channels_last)
pipe_3.unet.to(memory_format=torch.channels_last)
if run_compile:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe_2.unet = torch.compile(pipe_2.unet, mode="reduce-overhead", fullgraph=True)
pipe_3.unet = torch.compile(pipe_3.unet, mode="reduce-overhead", fullgraph=True)
prompt = "the blue hulk"
prompt_embeds = torch.randn((1, 2, 4096), dtype=torch.float16)
neg_prompt_embeds = torch.randn((1, 2, 4096), dtype=torch.float16)
for _ in range(3):
image = pipe(prompt_embeds=prompt_embeds, negative_prompt_embeds=neg_prompt_embeds, output_type="pt").images
image_2 = pipe_2(image=image, prompt_embeds=prompt_embeds, negative_prompt_embeds=neg_prompt_embeds, output_type="pt").images
image_3 = pipe_3(prompt=prompt, image=image, noise_level=100).images
```
PyTorch 2.0 및 `torch.compile()`둜 얻을 수 μžˆλŠ” κ°€λŠ₯ν•œ 속도 ν–₯상에 λŒ€ν•΄, [Stable Diffusion text-to-image pipeline](StableDiffusionPipeline)에 λŒ€ν•œ μƒλŒ€μ μΈ 속도 ν–₯상을 λ³΄μ—¬μ£ΌλŠ” 차트λ₯Ό 5개의 μ„œλ‘œ λ‹€λ₯Έ GPU μ œν’ˆκ΅°(배치 크기 4)에 λŒ€ν•΄ λ‚˜νƒ€λƒ…λ‹ˆλ‹€:
![t2i_speedup](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/pt2_benchmarks/t2i_speedup.png)
To give you an even better idea of how this speed-up holds for the other pipelines presented above, consider the following
plot that shows the benchmarking numbers from an A100 across three different batch sizes
(with PyTorch 2.0 nightly and `torch.compile()`):
이 속도 ν–₯상이 μœ„μ— μ œμ‹œλœ λ‹€λ₯Έ νŒŒμ΄ν”„λΌμΈμ— λŒ€ν•΄μ„œλ„ μ–΄λ–»κ²Œ μœ μ§€λ˜λŠ”μ§€ 더 잘 μ΄ν•΄ν•˜κΈ° μœ„ν•΄, μ„Έ κ°€μ§€μ˜ λ‹€λ₯Έ 배치 크기에 걸쳐 A100의 λ²€μΉ˜λ§ˆν‚Ή(PyTorch 2.0 nightly 및 `torch.compile() μ‚¬μš©) 수치λ₯Ό λ³΄μ—¬μ£ΌλŠ” 차트λ₯Ό λ³΄μž…λ‹ˆλ‹€:
![a100_numbers](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/pt2_benchmarks/a100_numbers.png)
_(μœ„ 차트의 벀치마크 λ©”νŠΈλ¦­μ€ **μ΄ˆλ‹Ή iteration 수(iterations/second)**μž…λ‹ˆλ‹€)_
κ·ΈλŸ¬λ‚˜ 투λͺ…성을 μœ„ν•΄ λͺ¨λ“  λ²€μΉ˜λ§ˆν‚Ή 수치λ₯Ό κ³΅κ°œν•©λ‹ˆλ‹€!
λ‹€μŒ ν‘œλ“€μ—μ„œλŠ”, **_μ΄ˆλ‹Ή μ²˜λ¦¬λ˜λŠ” iteration_** 수 μΈ‘λ©΄μ—μ„œμ˜ κ²°κ³Όλ₯Ό λ³΄μ—¬μ€λ‹ˆλ‹€.
### A100 (batch size: 1)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 21.66 | 23.13 | 44.03 | 49.74 |
| SD - img2img | 21.81 | 22.40 | 43.92 | 46.32 |
| SD - inpaint | 22.24 | 23.23 | 43.76 | 49.25 |
| SD - controlnet | 15.02 | 15.82 | 32.13 | 36.08 |
| IF | 20.21 / <br>13.84 / <br>24.00 | 20.12 / <br>13.70 / <br>24.03 | ❌ | 97.34 / <br>27.23 / <br>111.66 |
### A100 (batch size: 4)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 11.6 | 13.12 | 14.62 | 17.27 |
| SD - img2img | 11.47 | 13.06 | 14.66 | 17.25 |
| SD - inpaint | 11.67 | 13.31 | 14.88 | 17.48 |
| SD - controlnet | 8.28 | 9.38 | 10.51 | 12.41 |
| IF | 25.02 | 18.04 | ❌ | 48.47 |
### A100 (batch size: 16)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 3.04 | 3.6 | 3.83 | 4.68 |
| SD - img2img | 2.98 | 3.58 | 3.83 | 4.67 |
| SD - inpaint | 3.04 | 3.66 | 3.9 | 4.76 |
| SD - controlnet | 2.15 | 2.58 | 2.74 | 3.35 |
| IF | 8.78 | 9.82 | ❌ | 16.77 |
### V100 (batch size: 1)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 18.99 | 19.14 | 20.95 | 22.17 |
| SD - img2img | 18.56 | 19.18 | 20.95 | 22.11 |
| SD - inpaint | 19.14 | 19.06 | 21.08 | 22.20 |
| SD - controlnet | 13.48 | 13.93 | 15.18 | 15.88 |
| IF | 20.01 / <br>9.08 / <br>23.34 | 19.79 / <br>8.98 / <br>24.10 | ❌ | 55.75 / <br>11.57 / <br>57.67 |
### V100 (batch size: 4)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 5.96 | 5.89 | 6.83 | 6.86 |
| SD - img2img | 5.90 | 5.91 | 6.81 | 6.82 |
| SD - inpaint | 5.99 | 6.03 | 6.93 | 6.95 |
| SD - controlnet | 4.26 | 4.29 | 4.92 | 4.93 |
| IF | 15.41 | 14.76 | ❌ | 22.95 |
### V100 (batch size: 16)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 1.66 | 1.66 | 1.92 | 1.90 |
| SD - img2img | 1.65 | 1.65 | 1.91 | 1.89 |
| SD - inpaint | 1.69 | 1.69 | 1.95 | 1.93 |
| SD - controlnet | 1.19 | 1.19 | OOM after warmup | 1.36 |
| IF | 5.43 | 5.29 | ❌ | 7.06 |
### T4 (batch size: 1)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 6.9 | 6.95 | 7.3 | 7.56 |
| SD - img2img | 6.84 | 6.99 | 7.04 | 7.55 |
| SD - inpaint | 6.91 | 6.7 | 7.01 | 7.37 |
| SD - controlnet | 4.89 | 4.86 | 5.35 | 5.48 |
| IF | 17.42 / <br>2.47 / <br>18.52 | 16.96 / <br>2.45 / <br>18.69 | ❌ | 24.63 / <br>2.47 / <br>23.39 |
### T4 (batch size: 4)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 1.79 | 1.79 | 2.03 | 1.99 |
| SD - img2img | 1.77 | 1.77 | 2.05 | 2.04 |
| SD - inpaint | 1.81 | 1.82 | 2.09 | 2.09 |
| SD - controlnet | 1.34 | 1.27 | 1.47 | 1.46 |
| IF | 5.79 | 5.61 | ❌ | 7.39 |
### T4 (batch size: 16)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 2.34s | 2.30s | OOM after 2nd iteration | 1.99s |
| SD - img2img | 2.35s | 2.31s | OOM after warmup | 2.00s |
| SD - inpaint | 2.30s | 2.26s | OOM after 2nd iteration | 1.95s |
| SD - controlnet | OOM after 2nd iteration | OOM after 2nd iteration | OOM after warmup | OOM after warmup |
| IF * | 1.44 | 1.44 | ❌ | 1.94 |
### RTX 3090 (batch size: 1)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 22.56 | 22.84 | 23.84 | 25.69 |
| SD - img2img | 22.25 | 22.61 | 24.1 | 25.83 |
| SD - inpaint | 22.22 | 22.54 | 24.26 | 26.02 |
| SD - controlnet | 16.03 | 16.33 | 17.38 | 18.56 |
| IF | 27.08 / <br>9.07 / <br>31.23 | 26.75 / <br>8.92 / <br>31.47 | ❌ | 68.08 / <br>11.16 / <br>65.29 |
### RTX 3090 (batch size: 4)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 6.46 | 6.35 | 7.29 | 7.3 |
| SD - img2img | 6.33 | 6.27 | 7.31 | 7.26 |
| SD - inpaint | 6.47 | 6.4 | 7.44 | 7.39 |
| SD - controlnet | 4.59 | 4.54 | 5.27 | 5.26 |
| IF | 16.81 | 16.62 | ❌ | 21.57 |
### RTX 3090 (batch size: 16)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 1.7 | 1.69 | 1.93 | 1.91 |
| SD - img2img | 1.68 | 1.67 | 1.93 | 1.9 |
| SD - inpaint | 1.72 | 1.71 | 1.97 | 1.94 |
| SD - controlnet | 1.23 | 1.22 | 1.4 | 1.38 |
| IF | 5.01 | 5.00 | ❌ | 6.33 |
### RTX 4090 (batch size: 1)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 40.5 | 41.89 | 44.65 | 49.81 |
| SD - img2img | 40.39 | 41.95 | 44.46 | 49.8 |
| SD - inpaint | 40.51 | 41.88 | 44.58 | 49.72 |
| SD - controlnet | 29.27 | 30.29 | 32.26 | 36.03 |
| IF | 69.71 / <br>18.78 / <br>85.49 | 69.13 / <br>18.80 / <br>85.56 | ❌ | 124.60 / <br>26.37 / <br>138.79 |
### RTX 4090 (batch size: 4)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 12.62 | 12.84 | 15.32 | 15.59 |
| SD - img2img | 12.61 | 12,.79 | 15.35 | 15.66 |
| SD - inpaint | 12.65 | 12.81 | 15.3 | 15.58 |
| SD - controlnet | 9.1 | 9.25 | 11.03 | 11.22 |
| IF | 31.88 | 31.14 | ❌ | 43.92 |
### RTX 4090 (batch size: 16)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 3.17 | 3.2 | 3.84 | 3.85 |
| SD - img2img | 3.16 | 3.2 | 3.84 | 3.85 |
| SD - inpaint | 3.17 | 3.2 | 3.85 | 3.85 |
| SD - controlnet | 2.23 | 2.3 | 2.7 | 2.75 |
| IF | 9.26 | 9.2 | ❌ | 13.31 |
## μ°Έκ³ 
* Follow [this PR](https://github.com/huggingface/diffusers/pull/3313) for more details on the environment used for conducting the benchmarks.
* For the IF pipeline and batch sizes > 1, we only used a batch size of >1 in the first IF pipeline for text-to-image generation and NOT for upscaling. So, that means the two upscaling pipelines received a batch size of 1.
*Thanks to [Horace He](https://github.com/Chillee) from the PyTorch team for their support in improving our support of `torch.compile()` in Diffusers.*
* 벀치마크 μˆ˜ν–‰μ— μ‚¬μš©λœ ν™˜κ²½μ— λŒ€ν•œ μžμ„Έν•œ λ‚΄μš©μ€ [이 PR](https://github.com/huggingface/diffusers/pull/3313)을 μ°Έμ‘°ν•˜μ„Έμš”.
* IF νŒŒμ΄ν”„λΌμΈμ™€ 배치 크기 > 1의 경우 첫 번째 IF νŒŒμ΄ν”„λΌμΈμ—μ„œ text-to-image 생성을 μœ„ν•œ 배치 크기 > 1만 μ‚¬μš©ν–ˆμœΌλ©° μ—…μŠ€μΌ€μΌλ§μ—λŠ” μ‚¬μš©ν•˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€. 즉, 두 개의 μ—…μŠ€μΌ€μΌλ§ νŒŒμ΄ν”„λΌμΈμ΄ 배치 크기 1μž„μ„ μ˜λ―Έν•©λ‹ˆλ‹€.
*Diffusersμ—μ„œ `torch.compile()` 지원을 κ°œμ„ ν•˜λŠ” 데 도움을 μ€€ PyTorch νŒ€μ˜ [Horace He](https://github.com/Chillee)μ—κ²Œ κ°μ‚¬λ“œλ¦½λ‹ˆλ‹€.*