|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Dict, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...utils import BaseOutput, logging |
|
from ..attention_processor import Attention, AttentionProcessor, AttnProcessor |
|
from ..embeddings import TimestepEmbedding, Timesteps |
|
from ..modeling_utils import ModelMixin |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class Kandinsky3UNetOutput(BaseOutput): |
|
sample: torch.Tensor = None |
|
|
|
|
|
class Kandinsky3EncoderProj(nn.Module): |
|
def __init__(self, encoder_hid_dim, cross_attention_dim): |
|
super().__init__() |
|
self.projection_linear = nn.Linear(encoder_hid_dim, cross_attention_dim, bias=False) |
|
self.projection_norm = nn.LayerNorm(cross_attention_dim) |
|
|
|
def forward(self, x): |
|
x = self.projection_linear(x) |
|
x = self.projection_norm(x) |
|
return x |
|
|
|
|
|
class Kandinsky3UNet(ModelMixin, ConfigMixin): |
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 4, |
|
time_embedding_dim: int = 1536, |
|
groups: int = 32, |
|
attention_head_dim: int = 64, |
|
layers_per_block: Union[int, Tuple[int]] = 3, |
|
block_out_channels: Tuple[int] = (384, 768, 1536, 3072), |
|
cross_attention_dim: Union[int, Tuple[int]] = 4096, |
|
encoder_hid_dim: int = 4096, |
|
): |
|
super().__init__() |
|
|
|
|
|
expansion_ratio = 4 |
|
compression_ratio = 2 |
|
add_cross_attention = (False, True, True, True) |
|
add_self_attention = (False, True, True, True) |
|
|
|
out_channels = in_channels |
|
init_channels = block_out_channels[0] // 2 |
|
self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1) |
|
|
|
self.time_embedding = TimestepEmbedding( |
|
init_channels, |
|
time_embedding_dim, |
|
) |
|
|
|
self.add_time_condition = Kandinsky3AttentionPooling( |
|
time_embedding_dim, cross_attention_dim, attention_head_dim |
|
) |
|
|
|
self.conv_in = nn.Conv2d(in_channels, init_channels, kernel_size=3, padding=1) |
|
|
|
self.encoder_hid_proj = Kandinsky3EncoderProj(encoder_hid_dim, cross_attention_dim) |
|
|
|
hidden_dims = [init_channels] + list(block_out_channels) |
|
in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:])) |
|
text_dims = [cross_attention_dim if is_exist else None for is_exist in add_cross_attention] |
|
num_blocks = len(block_out_channels) * [layers_per_block] |
|
layer_params = [num_blocks, text_dims, add_self_attention] |
|
rev_layer_params = map(reversed, layer_params) |
|
|
|
cat_dims = [] |
|
self.num_levels = len(in_out_dims) |
|
self.down_blocks = nn.ModuleList([]) |
|
for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate( |
|
zip(in_out_dims, *layer_params) |
|
): |
|
down_sample = level != (self.num_levels - 1) |
|
cat_dims.append(out_dim if level != (self.num_levels - 1) else 0) |
|
self.down_blocks.append( |
|
Kandinsky3DownSampleBlock( |
|
in_dim, |
|
out_dim, |
|
time_embedding_dim, |
|
text_dim, |
|
res_block_num, |
|
groups, |
|
attention_head_dim, |
|
expansion_ratio, |
|
compression_ratio, |
|
down_sample, |
|
self_attention, |
|
) |
|
) |
|
|
|
self.up_blocks = nn.ModuleList([]) |
|
for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate( |
|
zip(reversed(in_out_dims), *rev_layer_params) |
|
): |
|
up_sample = level != 0 |
|
self.up_blocks.append( |
|
Kandinsky3UpSampleBlock( |
|
in_dim, |
|
cat_dims.pop(), |
|
out_dim, |
|
time_embedding_dim, |
|
text_dim, |
|
res_block_num, |
|
groups, |
|
attention_head_dim, |
|
expansion_ratio, |
|
compression_ratio, |
|
up_sample, |
|
self_attention, |
|
) |
|
) |
|
|
|
self.conv_norm_out = nn.GroupNorm(groups, init_channels) |
|
self.conv_act_out = nn.SiLU() |
|
self.conv_out = nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1) |
|
|
|
@property |
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "set_processor"): |
|
processors[f"{name}.processor"] = module.processor |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
self.set_attn_processor(AttnProcessor()) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
def forward(self, sample, timestep, encoder_hidden_states=None, encoder_attention_mask=None, return_dict=True): |
|
if encoder_attention_mask is not None: |
|
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
if not torch.is_tensor(timestep): |
|
dtype = torch.float32 if isinstance(timestep, float) else torch.int32 |
|
timestep = torch.tensor([timestep], dtype=dtype, device=sample.device) |
|
elif len(timestep.shape) == 0: |
|
timestep = timestep[None].to(sample.device) |
|
|
|
|
|
timestep = timestep.expand(sample.shape[0]) |
|
time_embed_input = self.time_proj(timestep).to(sample.dtype) |
|
time_embed = self.time_embedding(time_embed_input) |
|
|
|
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) |
|
|
|
if encoder_hidden_states is not None: |
|
time_embed = self.add_time_condition(time_embed, encoder_hidden_states, encoder_attention_mask) |
|
|
|
hidden_states = [] |
|
sample = self.conv_in(sample) |
|
for level, down_sample in enumerate(self.down_blocks): |
|
sample = down_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask) |
|
if level != self.num_levels - 1: |
|
hidden_states.append(sample) |
|
|
|
for level, up_sample in enumerate(self.up_blocks): |
|
if level != 0: |
|
sample = torch.cat([sample, hidden_states.pop()], dim=1) |
|
sample = up_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask) |
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act_out(sample) |
|
sample = self.conv_out(sample) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
return Kandinsky3UNetOutput(sample=sample) |
|
|
|
|
|
class Kandinsky3UpSampleBlock(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
cat_dim, |
|
out_channels, |
|
time_embed_dim, |
|
context_dim=None, |
|
num_blocks=3, |
|
groups=32, |
|
head_dim=64, |
|
expansion_ratio=4, |
|
compression_ratio=2, |
|
up_sample=True, |
|
self_attention=True, |
|
): |
|
super().__init__() |
|
up_resolutions = [[None, True if up_sample else None, None, None]] + [[None] * 4] * (num_blocks - 1) |
|
hidden_channels = ( |
|
[(in_channels + cat_dim, in_channels)] |
|
+ [(in_channels, in_channels)] * (num_blocks - 2) |
|
+ [(in_channels, out_channels)] |
|
) |
|
attentions = [] |
|
resnets_in = [] |
|
resnets_out = [] |
|
|
|
self.self_attention = self_attention |
|
self.context_dim = context_dim |
|
|
|
if self_attention: |
|
attentions.append( |
|
Kandinsky3AttentionBlock(out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio) |
|
) |
|
else: |
|
attentions.append(nn.Identity()) |
|
|
|
for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions): |
|
resnets_in.append( |
|
Kandinsky3ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution) |
|
) |
|
|
|
if context_dim is not None: |
|
attentions.append( |
|
Kandinsky3AttentionBlock( |
|
in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio |
|
) |
|
) |
|
else: |
|
attentions.append(nn.Identity()) |
|
|
|
resnets_out.append( |
|
Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets_in = nn.ModuleList(resnets_in) |
|
self.resnets_out = nn.ModuleList(resnets_out) |
|
|
|
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None): |
|
for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out): |
|
x = resnet_in(x, time_embed) |
|
if self.context_dim is not None: |
|
x = attention(x, time_embed, context, context_mask, image_mask) |
|
x = resnet_out(x, time_embed) |
|
|
|
if self.self_attention: |
|
x = self.attentions[0](x, time_embed, image_mask=image_mask) |
|
return x |
|
|
|
|
|
class Kandinsky3DownSampleBlock(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
time_embed_dim, |
|
context_dim=None, |
|
num_blocks=3, |
|
groups=32, |
|
head_dim=64, |
|
expansion_ratio=4, |
|
compression_ratio=2, |
|
down_sample=True, |
|
self_attention=True, |
|
): |
|
super().__init__() |
|
attentions = [] |
|
resnets_in = [] |
|
resnets_out = [] |
|
|
|
self.self_attention = self_attention |
|
self.context_dim = context_dim |
|
|
|
if self_attention: |
|
attentions.append( |
|
Kandinsky3AttentionBlock(in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio) |
|
) |
|
else: |
|
attentions.append(nn.Identity()) |
|
|
|
up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, False if down_sample else None, None]] |
|
hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1) |
|
for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions): |
|
resnets_in.append( |
|
Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio) |
|
) |
|
|
|
if context_dim is not None: |
|
attentions.append( |
|
Kandinsky3AttentionBlock( |
|
out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio |
|
) |
|
) |
|
else: |
|
attentions.append(nn.Identity()) |
|
|
|
resnets_out.append( |
|
Kandinsky3ResNetBlock( |
|
out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets_in = nn.ModuleList(resnets_in) |
|
self.resnets_out = nn.ModuleList(resnets_out) |
|
|
|
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None): |
|
if self.self_attention: |
|
x = self.attentions[0](x, time_embed, image_mask=image_mask) |
|
|
|
for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out): |
|
x = resnet_in(x, time_embed) |
|
if self.context_dim is not None: |
|
x = attention(x, time_embed, context, context_mask, image_mask) |
|
x = resnet_out(x, time_embed) |
|
return x |
|
|
|
|
|
class Kandinsky3ConditionalGroupNorm(nn.Module): |
|
def __init__(self, groups, normalized_shape, context_dim): |
|
super().__init__() |
|
self.norm = nn.GroupNorm(groups, normalized_shape, affine=False) |
|
self.context_mlp = nn.Sequential(nn.SiLU(), nn.Linear(context_dim, 2 * normalized_shape)) |
|
self.context_mlp[1].weight.data.zero_() |
|
self.context_mlp[1].bias.data.zero_() |
|
|
|
def forward(self, x, context): |
|
context = self.context_mlp(context) |
|
|
|
for _ in range(len(x.shape[2:])): |
|
context = context.unsqueeze(-1) |
|
|
|
scale, shift = context.chunk(2, dim=1) |
|
x = self.norm(x) * (scale + 1.0) + shift |
|
return x |
|
|
|
|
|
class Kandinsky3Block(nn.Module): |
|
def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None): |
|
super().__init__() |
|
self.group_norm = Kandinsky3ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim) |
|
self.activation = nn.SiLU() |
|
if up_resolution is not None and up_resolution: |
|
self.up_sample = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2) |
|
else: |
|
self.up_sample = nn.Identity() |
|
|
|
padding = int(kernel_size > 1) |
|
self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding) |
|
|
|
if up_resolution is not None and not up_resolution: |
|
self.down_sample = nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2) |
|
else: |
|
self.down_sample = nn.Identity() |
|
|
|
def forward(self, x, time_embed): |
|
x = self.group_norm(x, time_embed) |
|
x = self.activation(x) |
|
x = self.up_sample(x) |
|
x = self.projection(x) |
|
x = self.down_sample(x) |
|
return x |
|
|
|
|
|
class Kandinsky3ResNetBlock(nn.Module): |
|
def __init__( |
|
self, in_channels, out_channels, time_embed_dim, norm_groups=32, compression_ratio=2, up_resolutions=4 * [None] |
|
): |
|
super().__init__() |
|
kernel_sizes = [1, 3, 3, 1] |
|
hidden_channel = max(in_channels, out_channels) // compression_ratio |
|
hidden_channels = ( |
|
[(in_channels, hidden_channel)] + [(hidden_channel, hidden_channel)] * 2 + [(hidden_channel, out_channels)] |
|
) |
|
self.resnet_blocks = nn.ModuleList( |
|
[ |
|
Kandinsky3Block(in_channel, out_channel, time_embed_dim, kernel_size, norm_groups, up_resolution) |
|
for (in_channel, out_channel), kernel_size, up_resolution in zip( |
|
hidden_channels, kernel_sizes, up_resolutions |
|
) |
|
] |
|
) |
|
self.shortcut_up_sample = ( |
|
nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2) |
|
if True in up_resolutions |
|
else nn.Identity() |
|
) |
|
self.shortcut_projection = ( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else nn.Identity() |
|
) |
|
self.shortcut_down_sample = ( |
|
nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2) |
|
if False in up_resolutions |
|
else nn.Identity() |
|
) |
|
|
|
def forward(self, x, time_embed): |
|
out = x |
|
for resnet_block in self.resnet_blocks: |
|
out = resnet_block(out, time_embed) |
|
|
|
x = self.shortcut_up_sample(x) |
|
x = self.shortcut_projection(x) |
|
x = self.shortcut_down_sample(x) |
|
x = x + out |
|
return x |
|
|
|
|
|
class Kandinsky3AttentionPooling(nn.Module): |
|
def __init__(self, num_channels, context_dim, head_dim=64): |
|
super().__init__() |
|
self.attention = Attention( |
|
context_dim, |
|
context_dim, |
|
dim_head=head_dim, |
|
out_dim=num_channels, |
|
out_bias=False, |
|
) |
|
|
|
def forward(self, x, context, context_mask=None): |
|
context_mask = context_mask.to(dtype=context.dtype) |
|
context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask) |
|
return x + context.squeeze(1) |
|
|
|
|
|
class Kandinsky3AttentionBlock(nn.Module): |
|
def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4): |
|
super().__init__() |
|
self.in_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim) |
|
self.attention = Attention( |
|
num_channels, |
|
context_dim or num_channels, |
|
dim_head=head_dim, |
|
out_dim=num_channels, |
|
out_bias=False, |
|
) |
|
|
|
hidden_channels = expansion_ratio * num_channels |
|
self.out_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim) |
|
self.feed_forward = nn.Sequential( |
|
nn.Conv2d(num_channels, hidden_channels, kernel_size=1, bias=False), |
|
nn.SiLU(), |
|
nn.Conv2d(hidden_channels, num_channels, kernel_size=1, bias=False), |
|
) |
|
|
|
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None): |
|
height, width = x.shape[-2:] |
|
out = self.in_norm(x, time_embed) |
|
out = out.reshape(x.shape[0], -1, height * width).permute(0, 2, 1) |
|
context = context if context is not None else out |
|
if context_mask is not None: |
|
context_mask = context_mask.to(dtype=context.dtype) |
|
|
|
out = self.attention(out, context, context_mask) |
|
out = out.permute(0, 2, 1).unsqueeze(-1).reshape(out.shape[0], -1, height, width) |
|
x = x + out |
|
|
|
out = self.out_norm(x, time_embed) |
|
out = self.feed_forward(out) |
|
x = x + out |
|
return x |
|
|