svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
15.4 kB
# Copyright 2024 Microsoft and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ....configuration_utils import ConfigMixin, register_to_config
from ....models import ModelMixin, Transformer2DModel, VQModel
from ....schedulers import VQDiffusionScheduler
from ....utils import logging
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class LearnedClassifierFreeSamplingEmbeddings(ModelMixin, ConfigMixin):
"""
Utility class for storing learned text embeddings for classifier free sampling
"""
@register_to_config
def __init__(self, learnable: bool, hidden_size: Optional[int] = None, length: Optional[int] = None):
super().__init__()
self.learnable = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
embeddings = torch.zeros(length, hidden_size)
else:
embeddings = None
self.embeddings = torch.nn.Parameter(embeddings)
class VQDiffusionPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using VQ Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
vqvae ([`VQModel`]):
Vector Quantized Variational Auto-Encoder (VAE) model to encode and decode images to and from latent
representations.
text_encoder ([`~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32)).
tokenizer ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
transformer ([`Transformer2DModel`]):
A conditional `Transformer2DModel` to denoise the encoded image latents.
scheduler ([`VQDiffusionScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
"""
vqvae: VQModel
text_encoder: CLIPTextModel
tokenizer: CLIPTokenizer
transformer: Transformer2DModel
learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings
scheduler: VQDiffusionScheduler
def __init__(
self,
vqvae: VQModel,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
transformer: Transformer2DModel,
scheduler: VQDiffusionScheduler,
learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings,
):
super().__init__()
self.register_modules(
vqvae=vqvae,
transformer=transformer,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings,
)
def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance):
batch_size = len(prompt) if isinstance(prompt, list) else 1
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
prompt_embeds = self.text_encoder(text_input_ids.to(self.device))[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)
# duplicate text embeddings for each generation per prompt
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
negative_prompt_embeds = self.learned_classifier_free_sampling_embeddings.embeddings
negative_prompt_embeds = negative_prompt_embeds.unsqueeze(0).repeat(batch_size, 1, 1)
else:
uncond_tokens = [""] * batch_size
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# See comment for normalizing text embeddings
negative_prompt_embeds = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1, keepdim=True)
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
num_inference_steps: int = 100,
guidance_scale: float = 5.0,
truncation_rate: float = 1.0,
num_images_per_prompt: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
callback_steps: int = 1,
) -> Union[ImagePipelineOutput, Tuple]:
"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide image generation.
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
truncation_rate (`float`, *optional*, defaults to 1.0 (equivalent to no truncation)):
Used to "truncate" the predicted classes for x_0 such that the cumulative probability for a pixel is at
most `truncation_rate`. The lowest probabilities that would increase the cumulative probability above
`truncation_rate` are set to zero.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.Tensor` of shape (batch), *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Must be valid embedding indices.If not provided, a latents tensor will be generated of
completely masked latent pixels.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images.
"""
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
batch_size = batch_size * num_images_per_prompt
do_classifier_free_guidance = guidance_scale > 1.0
prompt_embeds = self._encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance)
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
# get the initial completely masked latents unless the user supplied it
latents_shape = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
mask_class = self.transformer.num_vector_embeds - 1
latents = torch.full(latents_shape, mask_class).to(self.device)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
"Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,"
f" {self.transformer.num_vector_embeds - 1} (inclusive)."
)
latents = latents.to(self.device)
# set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps_tensor = self.scheduler.timesteps.to(self.device)
sample = latents
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the sample if we are doing classifier free guidance
latent_model_input = torch.cat([sample] * 2) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
model_output = self.transformer(latent_model_input, encoder_hidden_states=prompt_embeds, timestep=t).sample
if do_classifier_free_guidance:
model_output_uncond, model_output_text = model_output.chunk(2)
model_output = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(model_output, dim=1, keepdim=True)
model_output = self.truncate(model_output, truncation_rate)
# remove `log(0)`'s (`-inf`s)
model_output = model_output.clamp(-70)
# compute the previous noisy sample x_t -> x_t-1
sample = self.scheduler.step(model_output, timestep=t, sample=sample, generator=generator).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, sample)
embedding_channels = self.vqvae.config.vq_embed_dim
embeddings_shape = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
embeddings = self.vqvae.quantize.get_codebook_entry(sample, shape=embeddings_shape)
image = self.vqvae.decode(embeddings, force_not_quantize=True).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
def truncate(self, log_p_x_0: torch.Tensor, truncation_rate: float) -> torch.Tensor:
"""
Truncates `log_p_x_0` such that for each column vector, the total cumulative probability is `truncation_rate`
The lowest probabilities that would increase the cumulative probability above `truncation_rate` are set to
zero.
"""
sorted_log_p_x_0, indices = torch.sort(log_p_x_0, 1, descending=True)
sorted_p_x_0 = torch.exp(sorted_log_p_x_0)
keep_mask = sorted_p_x_0.cumsum(dim=1) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
all_true = torch.full_like(keep_mask[:, 0:1, :], True)
keep_mask = torch.cat((all_true, keep_mask), dim=1)
keep_mask = keep_mask[:, :-1, :]
keep_mask = keep_mask.gather(1, indices.argsort(1))
rv = log_p_x_0.clone()
rv[~keep_mask] = -torch.inf # -inf = log(0)
return rv