diffusers-sdxl-controlnet
/
src
/diffusers
/pipelines
/stable_cascade
/pipeline_stable_cascade_prior.py
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from math import ceil | |
from typing import Callable, Dict, List, Optional, Union | |
import numpy as np | |
import PIL | |
import torch | |
from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection | |
from ...models import StableCascadeUNet | |
from ...schedulers import DDPMWuerstchenScheduler | |
from ...utils import BaseOutput, logging, replace_example_docstring | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
DEFAULT_STAGE_C_TIMESTEPS = list(np.linspace(1.0, 2 / 3, 20)) + list(np.linspace(2 / 3, 0.0, 11))[1:] | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import StableCascadePriorPipeline | |
>>> prior_pipe = StableCascadePriorPipeline.from_pretrained( | |
... "stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16 | |
... ).to("cuda") | |
>>> prompt = "an image of a shiba inu, donning a spacesuit and helmet" | |
>>> prior_output = pipe(prompt) | |
``` | |
""" | |
class StableCascadePriorPipelineOutput(BaseOutput): | |
""" | |
Output class for WuerstchenPriorPipeline. | |
Args: | |
image_embeddings (`torch.Tensor` or `np.ndarray`) | |
Prior image embeddings for text prompt | |
prompt_embeds (`torch.Tensor`): | |
Text embeddings for the prompt. | |
negative_prompt_embeds (`torch.Tensor`): | |
Text embeddings for the negative prompt. | |
""" | |
image_embeddings: Union[torch.Tensor, np.ndarray] | |
prompt_embeds: Union[torch.Tensor, np.ndarray] | |
prompt_embeds_pooled: Union[torch.Tensor, np.ndarray] | |
negative_prompt_embeds: Union[torch.Tensor, np.ndarray] | |
negative_prompt_embeds_pooled: Union[torch.Tensor, np.ndarray] | |
class StableCascadePriorPipeline(DiffusionPipeline): | |
""" | |
Pipeline for generating image prior for Stable Cascade. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
prior ([`StableCascadeUNet`]): | |
The Stable Cascade prior to approximate the image embedding from the text and/or image embedding. | |
text_encoder ([`CLIPTextModelWithProjection`]): | |
Frozen text-encoder | |
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)). | |
feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
Model that extracts features from generated images to be used as inputs for the `image_encoder`. | |
image_encoder ([`CLIPVisionModelWithProjection`]): | |
Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
scheduler ([`DDPMWuerstchenScheduler`]): | |
A scheduler to be used in combination with `prior` to generate image embedding. | |
resolution_multiple ('float', *optional*, defaults to 42.67): | |
Default resolution for multiple images generated. | |
""" | |
unet_name = "prior" | |
text_encoder_name = "text_encoder" | |
model_cpu_offload_seq = "image_encoder->text_encoder->prior" | |
_optional_components = ["image_encoder", "feature_extractor"] | |
_callback_tensor_inputs = ["latents", "text_encoder_hidden_states", "negative_prompt_embeds"] | |
def __init__( | |
self, | |
tokenizer: CLIPTokenizer, | |
text_encoder: CLIPTextModelWithProjection, | |
prior: StableCascadeUNet, | |
scheduler: DDPMWuerstchenScheduler, | |
resolution_multiple: float = 42.67, | |
feature_extractor: Optional[CLIPImageProcessor] = None, | |
image_encoder: Optional[CLIPVisionModelWithProjection] = None, | |
) -> None: | |
super().__init__() | |
self.register_modules( | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
image_encoder=image_encoder, | |
feature_extractor=feature_extractor, | |
prior=prior, | |
scheduler=scheduler, | |
) | |
self.register_to_config(resolution_multiple=resolution_multiple) | |
def prepare_latents( | |
self, batch_size, height, width, num_images_per_prompt, dtype, device, generator, latents, scheduler | |
): | |
latent_shape = ( | |
num_images_per_prompt * batch_size, | |
self.prior.config.in_channels, | |
ceil(height / self.config.resolution_multiple), | |
ceil(width / self.config.resolution_multiple), | |
) | |
if latents is None: | |
latents = randn_tensor(latent_shape, generator=generator, device=device, dtype=dtype) | |
else: | |
if latents.shape != latent_shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latent_shape}") | |
latents = latents.to(device) | |
latents = latents * scheduler.init_noise_sigma | |
return latents | |
def encode_prompt( | |
self, | |
device, | |
batch_size, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
prompt=None, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
prompt_embeds_pooled: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, | |
): | |
if prompt_embeds is None: | |
# get prompt text embeddings | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
attention_mask = text_inputs.attention_mask | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] | |
attention_mask = attention_mask[:, : self.tokenizer.model_max_length] | |
text_encoder_output = self.text_encoder( | |
text_input_ids.to(device), attention_mask=attention_mask.to(device), output_hidden_states=True | |
) | |
prompt_embeds = text_encoder_output.hidden_states[-1] | |
if prompt_embeds_pooled is None: | |
prompt_embeds_pooled = text_encoder_output.text_embeds.unsqueeze(1) | |
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
prompt_embeds_pooled = prompt_embeds_pooled.to(dtype=self.text_encoder.dtype, device=device) | |
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
prompt_embeds_pooled = prompt_embeds_pooled.repeat_interleave(num_images_per_prompt, dim=0) | |
if negative_prompt_embeds is None and do_classifier_free_guidance: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
negative_prompt_embeds_text_encoder_output = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=uncond_input.attention_mask.to(device), | |
output_hidden_states=True, | |
) | |
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.hidden_states[-1] | |
negative_prompt_embeds_pooled = negative_prompt_embeds_text_encoder_output.text_embeds.unsqueeze(1) | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
seq_len = negative_prompt_embeds_pooled.shape[1] | |
negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.to( | |
dtype=self.text_encoder.dtype, device=device | |
) | |
negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
# done duplicates | |
return prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled | |
def encode_image(self, images, device, dtype, batch_size, num_images_per_prompt): | |
image_embeds = [] | |
for image in images: | |
image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
image = image.to(device=device, dtype=dtype) | |
image_embed = self.image_encoder(image).image_embeds.unsqueeze(1) | |
image_embeds.append(image_embed) | |
image_embeds = torch.cat(image_embeds, dim=1) | |
image_embeds = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1) | |
negative_image_embeds = torch.zeros_like(image_embeds) | |
return image_embeds, negative_image_embeds | |
def check_inputs( | |
self, | |
prompt, | |
images=None, | |
image_embeds=None, | |
negative_prompt=None, | |
prompt_embeds=None, | |
prompt_embeds_pooled=None, | |
negative_prompt_embeds=None, | |
negative_prompt_embeds_pooled=None, | |
callback_on_step_end_tensor_inputs=None, | |
): | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if prompt_embeds is not None and prompt_embeds_pooled is None: | |
raise ValueError( | |
"If `prompt_embeds` are provided, `prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`" | |
) | |
if negative_prompt_embeds is not None and negative_prompt_embeds_pooled is None: | |
raise ValueError( | |
"If `negative_prompt_embeds` are provided, `negative_prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`" | |
) | |
if prompt_embeds_pooled is not None and negative_prompt_embeds_pooled is not None: | |
if prompt_embeds_pooled.shape != negative_prompt_embeds_pooled.shape: | |
raise ValueError( | |
"`prompt_embeds_pooled` and `negative_prompt_embeds_pooled` must have the same shape when passed" | |
f"directly, but got: `prompt_embeds_pooled` {prompt_embeds_pooled.shape} !=" | |
f"`negative_prompt_embeds_pooled` {negative_prompt_embeds_pooled.shape}." | |
) | |
if image_embeds is not None and images is not None: | |
raise ValueError( | |
f"Cannot forward both `images`: {images} and `image_embeds`: {image_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
if images: | |
for i, image in enumerate(images): | |
if not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image): | |
raise TypeError( | |
f"'images' must contain images of type 'torch.Tensor' or 'PIL.Image.Image, but got" | |
f"{type(image)} for image number {i}." | |
) | |
def guidance_scale(self): | |
return self._guidance_scale | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 | |
def num_timesteps(self): | |
return self._num_timesteps | |
def get_timestep_ratio_conditioning(self, t, alphas_cumprod): | |
s = torch.tensor([0.003]) | |
clamp_range = [0, 1] | |
min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2 | |
var = alphas_cumprod[t] | |
var = var.clamp(*clamp_range) | |
s, min_var = s.to(var.device), min_var.to(var.device) | |
ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s | |
return ratio | |
def __call__( | |
self, | |
prompt: Optional[Union[str, List[str]]] = None, | |
images: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]] = None, | |
height: int = 1024, | |
width: int = 1024, | |
num_inference_steps: int = 20, | |
timesteps: List[float] = None, | |
guidance_scale: float = 4.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
prompt_embeds_pooled: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, | |
image_embeds: Optional[torch.Tensor] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pt", | |
return_dict: bool = True, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
): | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
height (`int`, *optional*, defaults to 1024): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to 1024): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 60): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 8.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting | |
`decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely | |
linked to the text `prompt`, usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `decoder_guidance_scale` is less than `1`). | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
prompt_embeds_pooled (`torch.Tensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
negative_prompt_embeds_pooled (`torch.Tensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt` | |
input argument. | |
image_embeds (`torch.Tensor`, *optional*): | |
Pre-generated image embeddings. Can be used to easily tweak image inputs, *e.g.* prompt weighting. If | |
not provided, image embeddings will be generated from `image` input argument if existing. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` | |
(`np.array`) or `"pt"` (`torch.Tensor`). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
Examples: | |
Returns: | |
[`StableCascadePriorPipelineOutput`] or `tuple` [`StableCascadePriorPipelineOutput`] if `return_dict` is | |
True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image | |
embeddings. | |
""" | |
# 0. Define commonly used variables | |
device = self._execution_device | |
dtype = next(self.prior.parameters()).dtype | |
self._guidance_scale = guidance_scale | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
images=images, | |
image_embeds=image_embeds, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
prompt_embeds_pooled=prompt_embeds_pooled, | |
negative_prompt_embeds=negative_prompt_embeds, | |
negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
) | |
# 2. Encode caption + images | |
( | |
prompt_embeds, | |
prompt_embeds_pooled, | |
negative_prompt_embeds, | |
negative_prompt_embeds_pooled, | |
) = self.encode_prompt( | |
prompt=prompt, | |
device=device, | |
batch_size=batch_size, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
prompt_embeds_pooled=prompt_embeds_pooled, | |
negative_prompt_embeds=negative_prompt_embeds, | |
negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, | |
) | |
if images is not None: | |
image_embeds_pooled, uncond_image_embeds_pooled = self.encode_image( | |
images=images, | |
device=device, | |
dtype=dtype, | |
batch_size=batch_size, | |
num_images_per_prompt=num_images_per_prompt, | |
) | |
elif image_embeds is not None: | |
image_embeds_pooled = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1) | |
uncond_image_embeds_pooled = torch.zeros_like(image_embeds_pooled) | |
else: | |
image_embeds_pooled = torch.zeros( | |
batch_size * num_images_per_prompt, | |
1, | |
self.prior.config.clip_image_in_channels, | |
device=device, | |
dtype=dtype, | |
) | |
uncond_image_embeds_pooled = torch.zeros( | |
batch_size * num_images_per_prompt, | |
1, | |
self.prior.config.clip_image_in_channels, | |
device=device, | |
dtype=dtype, | |
) | |
if self.do_classifier_free_guidance: | |
image_embeds = torch.cat([image_embeds_pooled, uncond_image_embeds_pooled], dim=0) | |
else: | |
image_embeds = image_embeds_pooled | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_encoder_hidden_states = ( | |
torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds | |
) | |
text_encoder_pooled = ( | |
torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled]) | |
if negative_prompt_embeds is not None | |
else prompt_embeds_pooled | |
) | |
# 4. Prepare and set timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latents | |
latents = self.prepare_latents( | |
batch_size, height, width, num_images_per_prompt, dtype, device, generator, latents, self.scheduler | |
) | |
if isinstance(self.scheduler, DDPMWuerstchenScheduler): | |
timesteps = timesteps[:-1] | |
else: | |
if self.scheduler.config.clip_sample: | |
self.scheduler.config.clip_sample = False # disample sample clipping | |
logger.warning(" set `clip_sample` to be False") | |
# 6. Run denoising loop | |
if hasattr(self.scheduler, "betas"): | |
alphas = 1.0 - self.scheduler.betas | |
alphas_cumprod = torch.cumprod(alphas, dim=0) | |
else: | |
alphas_cumprod = [] | |
self._num_timesteps = len(timesteps) | |
for i, t in enumerate(self.progress_bar(timesteps)): | |
if not isinstance(self.scheduler, DDPMWuerstchenScheduler): | |
if len(alphas_cumprod) > 0: | |
timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod) | |
timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device) | |
else: | |
timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype) | |
else: | |
timestep_ratio = t.expand(latents.size(0)).to(dtype) | |
# 7. Denoise image embeddings | |
predicted_image_embedding = self.prior( | |
sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, | |
timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio, | |
clip_text_pooled=text_encoder_pooled, | |
clip_text=text_encoder_hidden_states, | |
clip_img=image_embeds, | |
return_dict=False, | |
)[0] | |
# 8. Check for classifier free guidance and apply it | |
if self.do_classifier_free_guidance: | |
predicted_image_embedding_text, predicted_image_embedding_uncond = predicted_image_embedding.chunk(2) | |
predicted_image_embedding = torch.lerp( | |
predicted_image_embedding_uncond, predicted_image_embedding_text, self.guidance_scale | |
) | |
# 9. Renoise latents to next timestep | |
if not isinstance(self.scheduler, DDPMWuerstchenScheduler): | |
timestep_ratio = t | |
latents = self.scheduler.step( | |
model_output=predicted_image_embedding, timestep=timestep_ratio, sample=latents, generator=generator | |
).prev_sample | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if output_type == "np": | |
latents = latents.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work | |
prompt_embeds = prompt_embeds.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work | |
negative_prompt_embeds = ( | |
negative_prompt_embeds.cpu().float().numpy() if negative_prompt_embeds is not None else None | |
) # float() as bfloat16-> numpy doesnt work | |
if not return_dict: | |
return ( | |
latents, | |
prompt_embeds, | |
prompt_embeds_pooled, | |
negative_prompt_embeds, | |
negative_prompt_embeds_pooled, | |
) | |
return StableCascadePriorPipelineOutput( | |
image_embeddings=latents, | |
prompt_embeds=prompt_embeds, | |
prompt_embeds_pooled=prompt_embeds_pooled, | |
negative_prompt_embeds=negative_prompt_embeds, | |
negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, | |
) | |