|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Tuple |
|
|
|
import torch |
|
|
|
from diffusers.utils.testing_utils import ( |
|
floats_tensor, |
|
require_torch, |
|
require_torch_accelerator_with_training, |
|
torch_all_close, |
|
torch_device, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
@require_torch |
|
class UNetBlockTesterMixin: |
|
@property |
|
def dummy_input(self): |
|
return self.get_dummy_input() |
|
|
|
@property |
|
def output_shape(self): |
|
if self.block_type == "down": |
|
return (4, 32, 16, 16) |
|
elif self.block_type == "mid": |
|
return (4, 32, 32, 32) |
|
elif self.block_type == "up": |
|
return (4, 32, 64, 64) |
|
|
|
raise ValueError(f"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.") |
|
|
|
def get_dummy_input( |
|
self, |
|
include_temb=True, |
|
include_res_hidden_states_tuple=False, |
|
include_encoder_hidden_states=False, |
|
include_skip_sample=False, |
|
): |
|
batch_size = 4 |
|
num_channels = 32 |
|
sizes = (32, 32) |
|
|
|
generator = torch.manual_seed(0) |
|
device = torch.device(torch_device) |
|
shape = (batch_size, num_channels) + sizes |
|
hidden_states = randn_tensor(shape, generator=generator, device=device) |
|
dummy_input = {"hidden_states": hidden_states} |
|
|
|
if include_temb: |
|
temb_channels = 128 |
|
dummy_input["temb"] = randn_tensor((batch_size, temb_channels), generator=generator, device=device) |
|
|
|
if include_res_hidden_states_tuple: |
|
generator_1 = torch.manual_seed(1) |
|
dummy_input["res_hidden_states_tuple"] = (randn_tensor(shape, generator=generator_1, device=device),) |
|
|
|
if include_encoder_hidden_states: |
|
dummy_input["encoder_hidden_states"] = floats_tensor((batch_size, 32, 32)).to(torch_device) |
|
|
|
if include_skip_sample: |
|
dummy_input["skip_sample"] = randn_tensor(((batch_size, 3) + sizes), generator=generator, device=device) |
|
|
|
return dummy_input |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"in_channels": 32, |
|
"out_channels": 32, |
|
"temb_channels": 128, |
|
} |
|
if self.block_type == "up": |
|
init_dict["prev_output_channel"] = 32 |
|
|
|
if self.block_type == "mid": |
|
init_dict.pop("out_channels") |
|
|
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def test_output(self, expected_slice): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
unet_block = self.block_class(**init_dict) |
|
unet_block.to(torch_device) |
|
unet_block.eval() |
|
|
|
with torch.no_grad(): |
|
output = unet_block(**inputs_dict) |
|
|
|
if isinstance(output, Tuple): |
|
output = output[0] |
|
|
|
self.assertEqual(output.shape, self.output_shape) |
|
|
|
output_slice = output[0, -1, -3:, -3:] |
|
expected_slice = torch.tensor(expected_slice).to(torch_device) |
|
assert torch_all_close(output_slice.flatten(), expected_slice, atol=5e-3) |
|
|
|
@require_torch_accelerator_with_training |
|
def test_training(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.block_class(**init_dict) |
|
model.to(torch_device) |
|
model.train() |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, Tuple): |
|
output = output[0] |
|
|
|
device = torch.device(torch_device) |
|
noise = randn_tensor(output.shape, device=device) |
|
loss = torch.nn.functional.mse_loss(output, noise) |
|
loss.backward() |
|
|