svjack's picture
Update README.md
837cf75 verified
|
raw
history blame
12.9 kB
# AnimatedDiff ControlNet SDXL Example
This document provides a step-by-step guide to setting up and running the `animatediff_controlnet_sdxl.py` script from the Hugging Face repository. The script leverages the `diffusers-sdxl-controlnet` library to generate animated images using ControlNet and SDXL models.
## Prerequisites
Before running the script, ensure you have the necessary dependencies installed. You can install them using the following commands:
### System Dependencies
```bash
sudo apt-get update && sudo apt-get install git-lfs cbm ffmpeg
```
### Python Dependencies
```bash
pip install git+https://huggingface.co/svjack/diffusers-sdxl-controlnet
pip install transformers peft sentencepiece moviepy controlnet_aux
```
### Clone the Repository
```bash
git clone https://huggingface.co/svjack/diffusers-sdxl-controlnet
cp diffusers-sdxl-controlnet/girl-pose.gif .
```
## Script Modifications
The script requires some modifications to work correctly. Specifically, you need to comment out certain lines related to LoRA processors:
```python
'''
drop #LoRAAttnProcessor2_0,
#LoRAXFormersAttnProcessor,
'''
```
## GIF to Frames Conversion
The script includes a function to convert a GIF into individual frames. This is useful for preparing input data for the animation pipeline.
```python
from PIL import Image, ImageSequence
import os
def gif_to_frames(gif_path, output_folder):
# Open the GIF file
gif = Image.open(gif_path)
# Ensure the output folder exists
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# Iterate through each frame of the GIF
for i, frame in enumerate(ImageSequence.Iterator(gif)):
# Copy the frame
frame_copy = frame.copy()
# Save the frame to the specified folder
frame_path = os.path.join(output_folder, f"frame_{i:04d}.png")
frame_copy.save(frame_path)
print(f"Successfully extracted {i + 1} frames to {output_folder}")
# Example call
gif_to_frames("girl-pose.gif", "girl_pose_frames")
```
### Use this girl pose as pose source video (gif)
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/6oTdxQtI0nLGq2YB4KYTh.gif)
## Running the Script
To run the script, follow these steps:
1. **Add the Script Path to System Path**:
```python
import sys
sys.path.insert(0, "diffusers-sdxl-controlnet/examples/community/")
from animatediff_controlnet_sdxl import *
from controlnet_aux.processor import Processor
```
2. **Load Necessary Libraries and Models**:
```python
import torch
from diffusers.models import MotionAdapter
from diffusers import DDIMScheduler
from diffusers.utils import export_to_gif
from diffusers import AutoPipelineForText2Image, ControlNetModel
from diffusers.utils import load_image
from PIL import Image
```
3. **Load the MotionAdapter Model**:
```python
adapter = MotionAdapter.from_pretrained(
"a-r-r-o-w/animatediff-motion-adapter-sdxl-beta",
torch_dtype=torch.float16
)
```
4. **Configure the Scheduler and ControlNet**:
```python
model_id = "svjack/GenshinImpact_XL_Base"
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
controlnet = ControlNetModel.from_pretrained(
"thibaud/controlnet-openpose-sdxl-1.0",
torch_dtype=torch.float16,
).to("cuda")
```
5. **Load the AnimateDiffSDXLControlnetPipeline**:
```python
pipe = AnimateDiffSDXLControlnetPipeline.from_pretrained(
model_id,
controlnet=controlnet,
motion_adapter=adapter,
scheduler=scheduler,
torch_dtype=torch.float16,
).to("cuda")
```
6. **Enable Memory Saving Features**:
```python
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
```
7. **Load Conditioning Frames**:
```python
import os
folder_path = "girl_pose_frames/"
frames = os.listdir(folder_path)
frames = list(filter(lambda x: x.endswith(".png"), frames))
frames.sort()
conditioning_frames = list(map(lambda x: Image.open(os.path.join(folder_path ,x)).resize((1024, 1024)), frames))[:16]
```
8. **Process Conditioning Frames**:
```python
p2 = Processor("openpose")
cn2 = [p2(frame) for frame in conditioning_frames]
```
9. **Define Prompts**:
```python
prompt = '''
solo,Xiangling\(genshin impact\),1girl,
full body professional photograph of a stunning detailed, sharp focus, dramatic
cinematic lighting, octane render unreal engine (film grain, blurry background
'''
prompt = "solo,Xiangling\(genshin impact\),1girl,full body professional photograph of a stunning detailed"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
```
10. **Generate Output**: (Use Genshin Impact character Xiangling)
```python
prompt = '''
solo,Xiangling\(genshin impact\),1girl,
full body professional photograph of a stunning detailed, sharp focus, dramatic
cinematic lighting, octane render unreal engine (film grain, blurry background
'''
prompt = "solo,Xiangling\(genshin impact\),1girl,full body professional photograph of a stunning detailed"
#prompt = "solo,Xiangling\(genshin impact\),1girl"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=50,
guidance_scale=20,
controlnet_conditioning_scale = 1.0,
width=512,
height=768,
num_frames=16,
conditioning_frames=cn2,
generator = generator
)
```
11. **Export Frames to GIF**:
```python
frames = output.frames[0]
export_to_gif(frames, "xiangling_animation.gif")
```
12. **Display the Result**:
```python
from IPython import display
display.Image("xiangling_animation.gif")
```
### Target gif
<div style="display: flex; justify-content: center; flex-wrap: nowrap;">
<div style="margin-right: 10px;">
<img src="xiangling_animation.gif" alt="Image 1" style="width: 512px; height: 768px;">
</div>
</div>
### Use Anime Upscale in https://github.com/svjack/APISR
<div style="display: flex; justify-content: center; flex-wrap: nowrap;">
<div style="margin-left: 10px;">
<img src="xiangling_animation_frames_4x.gif" alt="Image 2" style="width: 512px; height: 768px;">
</div>
</div>
### Run in Command line
- animatediff_controlnet_sdxl_run_script.py
```python
import sys
sys.path.insert(0, "diffusers-sdxl-controlnet/examples/community/")
from animatediff_controlnet_sdxl import *
import argparse
from moviepy.editor import VideoFileClip, ImageSequenceClip
import os
import torch
from diffusers.models import MotionAdapter
from diffusers import DDIMScheduler, AutoPipelineForText2Image, ControlNetModel
from diffusers.utils import export_to_gif
from PIL import Image
from controlnet_aux.processor import Processor
# 初始化 MotionAdapter 和 ControlNetModel
adapter = MotionAdapter.from_pretrained("a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16)
def initialize_pipeline(model_id):
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1)
controlnet = ControlNetModel.from_pretrained("thibaud/controlnet-openpose-sdxl-1.0", torch_dtype=torch.float16).to("cuda")
# 初始化 AnimateDiffSDXLControlnetPipeline
pipe = AnimateDiffSDXLControlnetPipeline.from_pretrained(
model_id,
controlnet=controlnet,
motion_adapter=adapter,
scheduler=scheduler,
torch_dtype=torch.float16,
).to("cuda")
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
return pipe
def split_video_into_frames(input_video_path, num_frames, temp_folder='temp_frames'):
"""
将视频处理成指定帧数的视频,并保持原始的帧率。
:param input_video_path: 输入视频文件路径
:param num_frames: 目标帧数
:param temp_folder: 临时文件夹路径
"""
clip = VideoFileClip(input_video_path)
original_duration = clip.duration
segment_duration = original_duration / num_frames
if not os.path.exists(temp_folder):
os.makedirs(temp_folder)
for i in range(num_frames):
frame_time = i * segment_duration
frame_path = os.path.join(temp_folder, f'frame_{i:04d}.png')
clip.save_frame(frame_path, t=frame_time)
frame_paths = [os.path.join(temp_folder, f'frame_{i:04d}.png') for i in range(num_frames)]
final_clip = ImageSequenceClip(frame_paths, fps=clip.fps)
final_clip.write_videofile("resampled_video.mp4", codec='libx264')
print(f"新的视频已保存到 resampled_video.mp4,包含 {num_frames} 个帧,并保持原始的帧率。")
def generate_video_with_prompt(input_video_path, prompt, model_id, gif_output_path, seed=0, num_frames=16, keep_imgs=False, temp_folder='temp_frames'):
"""
生成带有文本提示的视频。
:param input_video_path: 输入视频文件路径
:param prompt: 文本提示
:param model_id: 模型ID
:param gif_output_path: GIF 输出文件路径
:param seed: 随机种子
:param num_frames: 目标帧数
:param keep_imgs: 是否保留临时图片
:param temp_folder: 临时文件夹路径
"""
split_video_into_frames(input_video_path, num_frames, temp_folder)
folder_path = temp_folder
frames = os.listdir(folder_path)
frames = list(filter(lambda x: x.endswith(".png"), frames))
frames.sort()
conditioning_frames = list(map(lambda x: Image.open(os.path.join(folder_path, x)).resize((1024, 1024)), frames))[:num_frames]
p2 = Processor("openpose")
cn2 = [p2(frame) for frame in conditioning_frames]
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
generator = torch.Generator(device="cuda").manual_seed(seed)
pipe = initialize_pipeline(model_id)
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=50,
guidance_scale=20,
controlnet_conditioning_scale=1.0,
width=512,
height=768,
num_frames=num_frames,
conditioning_frames=cn2,
generator=generator
)
frames = output.frames[0]
export_to_gif(frames, gif_output_path)
print(f"生成的 GIF 已保存到 {gif_output_path}")
if not keep_imgs:
# 删除临时文件夹
import shutil
shutil.rmtree(temp_folder)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="生成带有文本提示的视频")
parser.add_argument("input_video", help="输入视频文件路径")
parser.add_argument("prompt", help="文本提示")
parser.add_argument("model_id", help="模型ID")
parser.add_argument("gif_output_path", help="GIF 输出文件路径")
parser.add_argument("--seed", type=int, default=0, help="随机种子")
parser.add_argument("--num_frames", type=int, default=16, help="目标帧数")
parser.add_argument("--keep_imgs", action="store_true", help="是否保留临时图片")
parser.add_argument("--temp_folder", default='temp_frames', help="临时文件夹路径")
args = parser.parse_args()
generate_video_with_prompt(args.input_video, args.prompt, args.model_id, args.gif_output_path, args.seed, args.num_frames, args.keep_imgs, args.temp_folder)
```
```bash
python animatediff_controlnet_sdxl_run_script.py girl_beach.mp4 \
"solo,Xiangling\(genshin impact\),1girl,full body professional photograph of a stunning detailed, drink tea use chinese cup" \
"svjack/GenshinImpact_XL_Base" \
xiangling_tea_animation.gif --num_frames 16 --temp_folder temp_frames
```
- Pose: girl_beach.mp4
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/pYx23VyLNkLk3YxAAqu5i.mp4"></video>
- Output: xiangling_tea_animation.gif
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/qUZOvGs5rzxN8zaZ4Xp3s.gif)
- Upscaled:
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/uwUDYOPiZbHuq5v6jWADr.mp4"></video>
## Conclusion
This script demonstrates how to use the `diffusers-sdxl-controlnet` library to generate animated images with ControlNet and SDXL models. By following the steps outlined above, you can create and visualize your own animated sequences.