svjack's picture
Upload 1392 files
43b7e92 verified
|
raw
history blame
12.5 kB

์ปค์Šคํ…€ Diffusion ํ•™์Šต ์˜ˆ์ œ

์ปค์Šคํ…€ Diffusion์€ ํ”ผ์‚ฌ์ฒด์˜ ์ด๋ฏธ์ง€ ๋ช‡ ์žฅ(4~5์žฅ)๋งŒ ์ฃผ์–ด์ง€๋ฉด Stable Diffusion์ฒ˜๋Ÿผ text-to-image ๋ชจ๋ธ์„ ์ปค์Šคํ„ฐ๋งˆ์ด์ง•ํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. 'train_custom_diffusion.py' ์Šคํฌ๋ฆฝํŠธ๋Š” ํ•™์Šต ๊ณผ์ •์„ ๊ตฌํ˜„ํ•˜๊ณ  ์ด๋ฅผ Stable Diffusion์— ๋งž๊ฒŒ ์กฐ์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

์ด ๊ต์œก ์‚ฌ๋ก€๋Š” Nupur Kumari๊ฐ€ ์ œ๊ณตํ•˜์˜€์Šต๋‹ˆ๋‹ค. (Custom Diffusion์˜ ์ €์ž ์ค‘ ํ•œ๋ช…).

๋กœ์ปฌ์—์„œ PyTorch๋กœ ์‹คํ–‰ํ•˜๊ธฐ

Dependencies ์„ค์น˜ํ•˜๊ธฐ

์Šคํฌ๋ฆฝํŠธ๋ฅผ ์‹คํ–‰ํ•˜๊ธฐ ์ „์— ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์˜ ํ•™์Šต dependencies๋ฅผ ์„ค์น˜ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค:

์ค‘์š”

์˜ˆ์ œ ์Šคํฌ๋ฆฝํŠธ์˜ ์ตœ์‹  ๋ฒ„์ „์„ ์„ฑ๊ณต์ ์œผ๋กœ ์‹คํ–‰ํ•˜๋ ค๋ฉด ์†Œ์Šค๋กœ๋ถ€ํ„ฐ ์„ค์น˜ํ•˜๋Š” ๊ฒƒ์„ ๋งค์šฐ ๊ถŒ์žฅํ•˜๋ฉฐ, ์˜ˆ์ œ ์Šคํฌ๋ฆฝํŠธ๋ฅผ ์ž์ฃผ ์—…๋ฐ์ดํŠธํ•˜๋Š” ๋งŒํผ ์ผ๋ถ€ ์˜ˆ์ œ๋ณ„ ์š”๊ตฌ ์‚ฌํ•ญ์„ ์„ค์น˜ํ•˜๊ณ  ์„ค์น˜๋ฅผ ์ตœ์‹  ์ƒํƒœ๋กœ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ์ด ์ข‹์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ƒˆ ๊ฐ€์ƒ ํ™˜๊ฒฝ์—์„œ ๋‹ค์Œ ๋‹จ๊ณ„๋ฅผ ์‹คํ–‰ํ•˜์„ธ์š”:

git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .

example folder๋กœ cdํ•˜์—ฌ ์ด๋™ํ•˜์„ธ์š”.

cd examples/custom_diffusion

์ด์ œ ์‹คํ–‰

pip install -r requirements.txt
pip install clip-retrieval 

๊ทธ๋ฆฌ๊ณ  ๐Ÿค—Accelerate ํ™˜๊ฒฝ์„ ์ดˆ๊ธฐํ™”:

accelerate config

๋˜๋Š” ์‚ฌ์šฉ์ž ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ์งˆ๋ฌธ์— ๋‹ตํ•˜์ง€ ์•Š๊ณ  ๊ธฐ๋ณธ ๊ฐ€์† ๊ตฌ์„ฑ์„ ์‚ฌ์šฉํ•˜๋ ค๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ•˜์„ธ์š”.

accelerate config default

๋˜๋Š” ์‚ฌ์šฉ ์ค‘์ธ ํ™˜๊ฒฝ์ด ๋Œ€ํ™”ํ˜• ์…ธ์„ ์ง€์›ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ(์˜ˆ: jupyter notebook)

from accelerate.utils import write_basic_config

write_basic_config()

๊ณ ์–‘์ด ์˜ˆ์ œ ๐Ÿ˜บ

์ด์ œ ๋ฐ์ดํ„ฐ์…‹์„ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—์„œ ๋ฐ์ดํ„ฐ์…‹์„ ๋‹ค์šด๋กœ๋“œํ•˜๊ณ  ์••์ถ•์„ ํ’‰๋‹ˆ๋‹ค. ์ง์ ‘ ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•˜๋ ค๋ฉด ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ์…‹ ์ƒ์„ฑํ•˜๊ธฐ ๊ฐ€์ด๋“œ๋ฅผ ์ฐธ๊ณ ํ•˜์„ธ์š”.

๋˜ํ•œ 'clip-retrieval'์„ ์‚ฌ์šฉํ•˜์—ฌ 200๊ฐœ์˜ ์‹ค์ œ ์ด๋ฏธ์ง€๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ , regularization์œผ๋กœ์„œ ์ด๋ฅผ ํ•™์Šต ๋ฐ์ดํ„ฐ์…‹์˜ ํƒ€๊ฒŸ ์ด๋ฏธ์ง€์™€ ๊ฒฐํ•ฉํ•ฉ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์ฃผ์–ด์ง„ ํƒ€๊ฒŸ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ ํ”Œ๋ž˜๊ทธ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด prior_loss_weight=1.๋กœ prior_preservation, real_prior regularization์„ ํ™œ์„ฑํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํด๋ž˜์Šค_ํ”„๋กฌํ”„ํŠธ๋Š” ๋Œ€์ƒ ์ด๋ฏธ์ง€์™€ ๋™์ผํ•œ ์นดํ…Œ๊ณ ๋ฆฌ ์ด๋ฆ„์ด์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ˆ˜์ง‘๋œ ์‹ค์ œ ์ด๋ฏธ์ง€์—๋Š” class_prompt์™€ ์œ ์‚ฌํ•œ ํ…์ŠคํŠธ ์บก์…˜์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๊ฒ€์ƒ‰๋œ ์ด๋ฏธ์ง€๋Š” class_data_dir์— ์ €์žฅ๋ฉ๋‹ˆ๋‹ค. ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€๋ฅผ regularization์œผ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด real_prior`๋ฅผ ๋น„ํ™œ์„ฑํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‹ค์ œ ์ด๋ฏธ์ง€๋ฅผ ์ˆ˜์ง‘ํ•˜๋ ค๋ฉด ํ›ˆ๋ จ ์ „์— ์ด ๋ช…๋ น์„ ๋จผ์ € ์‚ฌ์šฉํ•˜์‹ญ์‹œ์˜ค.

pip install clip-retrieval
python retrieve.py --class_prompt cat --class_data_dir real_reg/samples_cat --num_class_images 200

์ฐธ๊ณ : stable-diffusion-2 768x768 ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ 'ํ•ด์ƒ๋„'๋ฅผ 768๋กœ ๋ณ€๊ฒฝํ•˜์„ธ์š”.

์Šคํฌ๋ฆฝํŠธ๋Š” ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ์™€ pytorch_custom_diffusion_weights.bin ํŒŒ์ผ์„ ์ƒ์„ฑํ•˜์—ฌ ์ €์žฅ์†Œ์— ์ €์žฅํ•ฉ๋‹ˆ๋‹ค.

export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export OUTPUT_DIR="path-to-save-model"
export INSTANCE_DIR="./data/cat"

accelerate launch train_custom_diffusion.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --output_dir=$OUTPUT_DIR \
  --class_data_dir=./real_reg/samples_cat/ \
  --with_prior_preservation --real_prior --prior_loss_weight=1.0 \
  --class_prompt="cat" --num_class_images=200 \
  --instance_prompt="photo of a <new1> cat"  \
  --resolution=512  \
  --train_batch_size=2  \
  --learning_rate=1e-5  \
  --lr_warmup_steps=0 \
  --max_train_steps=250 \
  --scale_lr --hflip  \
  --modifier_token "<new1>" \
  --push_to_hub

๋” ๋‚ฎ์€ VRAM ์š”๊ตฌ ์‚ฌํ•ญ(GPU๋‹น 16GB)์œผ๋กœ ๋” ๋น ๋ฅด๊ฒŒ ํ›ˆ๋ จํ•˜๋ ค๋ฉด --enable_xformers_memory_efficient_attention์„ ์‚ฌ์šฉํ•˜์„ธ์š”. ์„ค์น˜ ๋ฐฉ๋ฒ•์€ ๊ฐ€์ด๋“œ๋ฅผ ๋”ฐ๋ฅด์„ธ์š”.

๊ฐ€์ค‘์น˜ ๋ฐ ํŽธํ–ฅ(wandb)์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹คํ—˜์„ ์ถ”์ ํ•˜๊ณ  ์ค‘๊ฐ„ ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•˜๋ ค๋ฉด(๊ฐ•๋ ฅํžˆ ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค) ๋‹ค์Œ ๋‹จ๊ณ„๋ฅผ ๋”ฐ๋ฅด์„ธ์š”:

  • wandb ์„ค์น˜: pip install wandb.
  • ๋กœ๊ทธ์ธ : wandb login.
  • ๊ทธ๋Ÿฐ ๋‹ค์Œ ํŠธ๋ ˆ์ด๋‹์„ ์‹œ์ž‘ํ•˜๋Š” ๋™์•ˆ validation_prompt๋ฅผ ์ง€์ •ํ•˜๊ณ  report_to๋ฅผ wandb๋กœ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ด€๋ จ ์ธ์ˆ˜๋ฅผ ๊ตฌ์„ฑํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค:
    • num_validation_images
    • validation_steps
accelerate launch train_custom_diffusion.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --output_dir=$OUTPUT_DIR \
  --class_data_dir=./real_reg/samples_cat/ \
  --with_prior_preservation --real_prior --prior_loss_weight=1.0 \
  --class_prompt="cat" --num_class_images=200 \
  --instance_prompt="photo of a <new1> cat"  \
  --resolution=512  \
  --train_batch_size=2  \
  --learning_rate=1e-5  \
  --lr_warmup_steps=0 \
  --max_train_steps=250 \
  --scale_lr --hflip  \
  --modifier_token "<new1>" \
  --validation_prompt="<new1> cat sitting in a bucket" \
  --report_to="wandb" \
  --push_to_hub

๋‹ค์Œ์€ Weights and Biases page์˜ ์˜ˆ์‹œ์ด๋ฉฐ, ์—ฌ๋Ÿฌ ํ•™์Šต ์„ธ๋ถ€ ์ •๋ณด์™€ ํ•จ๊ป˜ ์ค‘๊ฐ„ ๊ฒฐ๊ณผ๋“ค์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

--push_to_hub๋ฅผ ์ง€์ •ํ•˜๋ฉด ํ•™์Šต๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ํ—ˆ๊น… ํŽ˜์ด์Šค ํ—ˆ๋ธŒ์˜ ๋ฆฌํฌ์ง€ํ† ๋ฆฌ์— ํ‘ธ์‹œ๋ฉ๋‹ˆ๋‹ค. ๋‹ค์Œ์€ ์˜ˆ์ œ ๋ฆฌํฌ์ง€ํ† ๋ฆฌ์ž…๋‹ˆ๋‹ค.

๋ฉ€ํ‹ฐ ์ปจ์…‰์— ๋Œ€ํ•œ ํ•™์Šต ๐Ÿฑ๐Ÿชต

this์™€ ์œ ์‚ฌํ•˜๊ฒŒ ๊ฐ ์ปจ์…‰์— ๋Œ€ํ•œ ์ •๋ณด๊ฐ€ ํฌํ•จ๋œ json ํŒŒ์ผ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

์‹ค์ œ ์ด๋ฏธ์ง€๋ฅผ ์ˆ˜์ง‘ํ•˜๋ ค๋ฉด json ํŒŒ์ผ์˜ ๊ฐ ์ปจ์…‰์— ๋Œ€ํ•ด ์ด ๋ช…๋ น์„ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค.

pip install clip-retrieval
python retrieve.py --class_prompt {} --class_data_dir {} --num_class_images 200

๊ทธ๋Ÿผ ์šฐ๋ฆฌ๋Š” ํ•™์Šต์‹œํ‚ฌ ์ค€๋น„๊ฐ€ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค!

export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export OUTPUT_DIR="path-to-save-model"

accelerate launch train_custom_diffusion.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --output_dir=$OUTPUT_DIR \
  --concepts_list=./concept_list.json \
  --with_prior_preservation --real_prior --prior_loss_weight=1.0 \
  --resolution=512  \
  --train_batch_size=2  \
  --learning_rate=1e-5  \
  --lr_warmup_steps=0 \
  --max_train_steps=500 \
  --num_class_images=200 \
  --scale_lr --hflip  \
  --modifier_token "<new1>+<new2>" \
  --push_to_hub

๋‹ค์Œ์€ Weights and Biases page์˜ ์˜ˆ์‹œ์ด๋ฉฐ, ๋‹ค๋ฅธ ํ•™์Šต ์„ธ๋ถ€ ์ •๋ณด์™€ ํ•จ๊ป˜ ์ค‘๊ฐ„ ๊ฒฐ๊ณผ๋“ค์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์‚ฌ๋žŒ ์–ผ๊ตด์— ๋Œ€ํ•œ ํ•™์Šต

์‚ฌ๋žŒ ์–ผ๊ตด์— ๋Œ€ํ•œ ํŒŒ์ธํŠœ๋‹์„ ์œ„ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์„ค์ •์ด ๋” ํšจ๊ณผ์ ์ด๋ผ๋Š” ๊ฒƒ์„ ํ™•์ธํ–ˆ์Šต๋‹ˆ๋‹ค: learning_rate=5e-6, max_train_steps=1000 to 2000, freeze_model=crossattn์„ ์ตœ์†Œ 15~20๊ฐœ์˜ ์ด๋ฏธ์ง€๋กœ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.

์‹ค์ œ ์ด๋ฏธ์ง€๋ฅผ ์ˆ˜์ง‘ํ•˜๋ ค๋ฉด ํ›ˆ๋ จ ์ „์— ์ด ๋ช…๋ น์„ ๋จผ์ € ์‚ฌ์šฉํ•˜์‹ญ์‹œ์˜ค.

pip install clip-retrieval
python retrieve.py --class_prompt person --class_data_dir real_reg/samples_person --num_class_images 200

์ด์ œ ํ•™์Šต์„ ์‹œ์ž‘ํ•˜์„ธ์š”!

export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export OUTPUT_DIR="path-to-save-model"
export INSTANCE_DIR="path-to-images"

accelerate launch train_custom_diffusion.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --output_dir=$OUTPUT_DIR \
  --class_data_dir=./real_reg/samples_person/ \
  --with_prior_preservation --real_prior --prior_loss_weight=1.0 \
  --class_prompt="person" --num_class_images=200 \
  --instance_prompt="photo of a <new1> person"  \
  --resolution=512  \
  --train_batch_size=2  \
  --learning_rate=5e-6  \
  --lr_warmup_steps=0 \
  --max_train_steps=1000 \
  --scale_lr --hflip --noaug \
  --freeze_model crossattn \
  --modifier_token "<new1>" \
  --enable_xformers_memory_efficient_attention \
  --push_to_hub

์ถ”๋ก 

์œ„ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚จ ํ›„์—๋Š” ์•„๋ž˜ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ถ”๋ก ์„ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ”„๋กฌํ”„ํŠธ์— 'modifier token'(์˜ˆ: ์œ„ ์˜ˆ์ œ์—์„œ๋Š” <new1>)์„ ๋ฐ˜๋“œ์‹œ ํฌํ•จํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

import torch
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16).to("cuda")
pipe.unet.load_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
pipe.load_textual_inversion("path-to-save-model", weight_name="<new1>.bin")

image = pipe(
    "<new1> cat sitting in a bucket",
    num_inference_steps=100,
    guidance_scale=6.0,
    eta=1.0,
).images[0]
image.save("cat.png")

ํ—ˆ๋ธŒ ๋ฆฌํฌ์ง€ํ† ๋ฆฌ์—์„œ ์ด๋Ÿฌํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ง์ ‘ ๋กœ๋“œํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

import torch
from huggingface_hub.repocard import RepoCard
from diffusers import DiffusionPipeline

model_id = "sayakpaul/custom-diffusion-cat"
card = RepoCard.load(model_id)
base_model_id = card.data.to_dict()["base_model"]

pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16).to("cuda")
pipe.unet.load_attn_procs(model_id, weight_name="pytorch_custom_diffusion_weights.bin")
pipe.load_textual_inversion(model_id, weight_name="<new1>.bin")

image = pipe(
    "<new1> cat sitting in a bucket",
    num_inference_steps=100,
    guidance_scale=6.0,
    eta=1.0,
).images[0]
image.save("cat.png")

๋‹ค์Œ์€ ์—ฌ๋Ÿฌ ์ปจ์…‰์œผ๋กœ ์ถ”๋ก ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ์˜ˆ์ œ์ž…๋‹ˆ๋‹ค:

import torch
from huggingface_hub.repocard import RepoCard
from diffusers import DiffusionPipeline

model_id = "sayakpaul/custom-diffusion-cat-wooden-pot"
card = RepoCard.load(model_id)
base_model_id = card.data.to_dict()["base_model"]

pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16).to("cuda")
pipe.unet.load_attn_procs(model_id, weight_name="pytorch_custom_diffusion_weights.bin")
pipe.load_textual_inversion(model_id, weight_name="<new1>.bin")
pipe.load_textual_inversion(model_id, weight_name="<new2>.bin")

image = pipe(
    "the <new1> cat sculpture in the style of a <new2> wooden pot",
    num_inference_steps=100,
    guidance_scale=6.0,
    eta=1.0,
).images[0]
image.save("multi-subject.png")

์—ฌ๊ธฐ์„œ '๊ณ ์–‘์ด'์™€ '๋‚˜๋ฌด ๋ƒ„๋น„'๋Š” ์—ฌ๋Ÿฌ ์ปจ์…‰์„ ๋งํ•ฉ๋‹ˆ๋‹ค.

ํ•™์Šต๋œ ์ฒดํฌํฌ์ธํŠธ์—์„œ ์ถ”๋ก ํ•˜๊ธฐ

--checkpointing_steps ์ธ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•œ ๊ฒฝ์šฐ ํ•™์Šต ๊ณผ์ •์—์„œ ์ €์žฅ๋œ ์ „์ฒด ์ฒดํฌํฌ์ธํŠธ ์ค‘ ํ•˜๋‚˜์—์„œ ์ถ”๋ก ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.

Grads๋ฅผ None์œผ๋กœ ์„ค์ •

๋” ๋งŽ์€ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์ ˆ์•ฝํ•˜๋ ค๋ฉด ์Šคํฌ๋ฆฝํŠธ์— --set_grads_to_none ์ธ์ˆ˜๋ฅผ ์ „๋‹ฌํ•˜์„ธ์š”. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์„ฑ์ ์ด 0์ด ์•„๋‹Œ ์—†์Œ์œผ๋กœ ์„ค์ •๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํŠน์ • ๋™์ž‘์ด ๋ณ€๊ฒฝ๋˜๋ฏ€๋กœ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•˜๋ฉด ์ด ์ธ์ˆ˜๋ฅผ ์ œ๊ฑฐํ•˜์„ธ์š”.

์ž์„ธํ•œ ์ •๋ณด: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html

์‹คํ—˜ ๊ฒฐ๊ณผ

์‹คํ—˜์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ ๋‹น์‚ฌ ์›นํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.