GLIGEN: Open-Set Grounded Text-to-Image Generation
These scripts contain the code to prepare the grounding data and train the GLIGEN model on COCO dataset.
Install the requirements
conda create -n diffusers python==3.10
conda activate diffusers
pip install -r requirements.txt
And initialize an 🤗Accelerate environment with:
accelerate config
Or for a default accelerate configuration without answering questions about your environment
accelerate config default
Or if your environment doesn't support an interactive shell e.g. a notebook
from accelerate.utils import write_basic_config
write_basic_config()
Prepare the training data
If you want to make your own grounding data, you need to install the requirements.
I used RAM to tag images, Grounding DINO to detect objects, and BLIP2 to caption instances.
Only RAM needs to be installed manually:
pip install git+https://github.com/xinyu1205/recognize-anything.git --no-deps
Download the pre-trained model:
huggingface-cli download --resume-download xinyu1205/recognize_anything_model ram_swin_large_14m.pth
huggingface-cli download --resume-download IDEA-Research/grounding-dino-base
huggingface-cli download --resume-download Salesforce/blip2-flan-t5-xxl
huggingface-cli download --resume-download clip-vit-large-patch14
huggingface-cli download --resume-download masterful/gligen-1-4-generation-text-box
Make the training data on 8 GPUs:
torchrun --master_port 17673 --nproc_per_node=8 make_datasets.py \
--data_root /mnt/workspace/workgroup/zhizhonghuang/dataset/COCO/train2017 \
--save_root /root/gligen_data \
--ram_checkpoint /root/.cache/huggingface/hub/models--xinyu1205--recognize_anything_model/snapshots/ebc52dc741e86466202a5ab8ab22eae6e7d48bf1/ram_swin_large_14m.pth
You can download the COCO training data from
huggingface-cli download --resume-download Hzzone/GLIGEN_COCO coco_train2017.pth
It's in the format of
[
...
{
'file_path': Path,
'annos': [
{
'caption': Instance
Caption,
'bbox': bbox
in
xyxy,
'text_embeddings_before_projection': CLIP
text
embedding
before
linear
projection
}
]
}
...
]
Training commands
The training script is heavily based on https://github.com/huggingface/diffusers/blob/main/examples/controlnet/train_controlnet.py
accelerate launch train_gligen_text.py \
--data_path /root/data/zhizhonghuang/coco_train2017.pth \
--image_path /mnt/workspace/workgroup/zhizhonghuang/dataset/COCO/train2017 \
--train_batch_size 8 \
--max_train_steps 100000 \
--checkpointing_steps 1000 \
--checkpoints_total_limit 10 \
--learning_rate 5e-5 \
--dataloader_num_workers 16 \
--mixed_precision fp16 \
--report_to wandb \
--tracker_project_name gligen \
--output_dir /root/data/zhizhonghuang/ckpt/GLIGEN_Text_Retrain_COCO
I trained the model on 8 A100 GPUs for about 11 hours (at least 24GB GPU memory). The generated images will follow the layout possibly at 50k iterations.
Note that although the pre-trained GLIGEN model has been loaded, the parameters of fuser
and position_net
have been reset (see line 420 in train_gligen_text.py
)
The trained model can be downloaded from
huggingface-cli download --resume-download Hzzone/GLIGEN_COCO config.json diffusion_pytorch_model.safetensors
You can run demo.ipynb
to visualize the generated images.
Example prompts:
prompt = 'A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky'
boxes = [[0.041015625, 0.548828125, 0.453125, 0.859375],
[0.525390625, 0.552734375, 0.93359375, 0.865234375],
[0.12890625, 0.015625, 0.412109375, 0.279296875],
[0.578125, 0.08203125, 0.857421875, 0.27734375]]
gligen_phrases = ['a green car', 'a blue truck', 'a red air balloon', 'a bird']
Citation
@article{li2023gligen,
title={GLIGEN: Open-Set Grounded Text-to-Image Generation},
author={Li, Yuheng and Liu, Haotian and Wu, Qingyang and Mu, Fangzhou and Yang, Jianwei and Gao, Jianfeng and Li, Chunyuan and Lee, Yong Jae},
journal={CVPR},
year={2023}
}