|
# InstructPix2Pix text-to-edit-image fine-tuning |
|
This extended LoRA training script was authored by [Aiden-Frost](https://github.com/Aiden-Frost). |
|
This is an experimental LoRA extension of [this example](https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/train_instruct_pix2pix.py). This script provides further support add LoRA layers for unet model. |
|
|
|
## Training script example |
|
|
|
```bash |
|
export MODEL_ID="timbrooks/instruct-pix2pix" |
|
export DATASET_ID="instruction-tuning-sd/cartoonization" |
|
export OUTPUT_DIR="instructPix2Pix-cartoonization" |
|
|
|
accelerate launch finetune_instruct_pix2pix.py \ |
|
--pretrained_model_name_or_path=$MODEL_ID \ |
|
--dataset_name=$DATASET_ID \ |
|
--enable_xformers_memory_efficient_attention \ |
|
--resolution=256 --random_flip \ |
|
--train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ |
|
--max_train_steps=15000 \ |
|
--checkpointing_steps=5000 --checkpoints_total_limit=1 \ |
|
--learning_rate=5e-05 --lr_warmup_steps=0 \ |
|
--val_image_url="https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" \ |
|
--validation_prompt="Generate a cartoonized version of the natural image" \ |
|
--seed=42 \ |
|
--rank=4 \ |
|
--output_dir=$OUTPUT_DIR \ |
|
--report_to=wandb \ |
|
--push_to_hub |
|
``` |
|
|
|
## Inference |
|
After training the model and the lora weight of the model is stored in the ```$OUTPUT_DIR```. |
|
|
|
```bash |
|
# load the base model pipeline |
|
pipe_lora = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix") |
|
|
|
# Load LoRA weights from the provided path |
|
output_dir = "path/to/lora_weight_directory" |
|
pipe_lora.unet.load_attn_procs(output_dir) |
|
|
|
input_image_path = "/path/to/input_image" |
|
input_image = Image.open(input_image_path) |
|
edited_images = pipe_lora(num_images_per_prompt=1, prompt=args.edit_prompt, image=input_image, num_inference_steps=1000).images |
|
edited_images[0].show() |
|
|
|
``` |
|
|
|
## Results |
|
|
|
Here is an example of using the script to train a instructpix2pix model. |
|
Trained on google colab T4 GPU |
|
|
|
```bash |
|
MODEL_ID="timbrooks/instruct-pix2pix" |
|
DATASET_ID="instruction-tuning-sd/cartoonization" |
|
TRAIN_EPOCHS=100 |
|
``` |
|
|
|
Below are few examples for given the input image, edit_prompt and the edited_image (output of the model) |
|
|
|
<p align="center"> |
|
<img src="https://github.com/Aiden-Frost/Efficiently-teaching-counting-and-cartoonization-to-InstructPix2Pix.-/blob/main/diffusers_result_assets/edited_image_results.png?raw=true" alt="instructpix2pix-inputs" width=600/> |
|
</p> |
|
|
|
|
|
Here are some rough statistics about the training model using this script |
|
|
|
<p align="center"> |
|
<img src="https://github.com/Aiden-Frost/Efficiently-teaching-counting-and-cartoonization-to-InstructPix2Pix.-/blob/main/diffusers_result_assets/results.png?raw=true" alt="instructpix2pix-inputs" width=600/> |
|
</p> |
|
|
|
## References |
|
|
|
* InstructPix2Pix - https://github.com/timothybrooks/instruct-pix2pix |
|
* Dataset and example training script - https://huggingface.co/blog/instruction-tuning-sd |
|
* For more information about the project - https://github.com/Aiden-Frost/Efficiently-teaching-counting-and-cartoonization-to-InstructPix2Pix.- |