diffusers-sdxl-controlnet / examples /textual_inversion /test_textual_inversion_sdxl.py
svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
5.77 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
import tempfile
sys.path.append("..")
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class TextualInversionSdxl(ExamplesTestsAccelerate):
def test_textual_inversion_sdxl(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
examples/textual_inversion/textual_inversion_sdxl.py
--pretrained_model_name_or_path hf-internal-testing/tiny-sdxl-pipe
--train_data_dir docs/source/en/imgs
--learnable_property object
--placeholder_token <cat-toy>
--initializer_token a
--save_steps 1
--num_vectors 2
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
""".split()
run_command(self._launch_args + test_args)
# save_pretrained smoke test
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "learned_embeds.safetensors")))
def test_textual_inversion_sdxl_checkpointing(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
examples/textual_inversion/textual_inversion_sdxl.py
--pretrained_model_name_or_path hf-internal-testing/tiny-sdxl-pipe
--train_data_dir docs/source/en/imgs
--learnable_property object
--placeholder_token <cat-toy>
--initializer_token a
--save_steps 1
--num_vectors 2
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 3
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--checkpointing_steps=1
--checkpoints_total_limit=2
""".split()
run_command(self._launch_args + test_args)
# check checkpoint directories exist
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-2", "checkpoint-3"},
)
def test_textual_inversion_sdxl_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
examples/textual_inversion/textual_inversion_sdxl.py
--pretrained_model_name_or_path hf-internal-testing/tiny-sdxl-pipe
--train_data_dir docs/source/en/imgs
--learnable_property object
--placeholder_token <cat-toy>
--initializer_token a
--save_steps 1
--num_vectors 2
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--checkpointing_steps=1
""".split()
run_command(self._launch_args + test_args)
# check checkpoint directories exist
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-1", "checkpoint-2"},
)
resume_run_args = f"""
examples/textual_inversion/textual_inversion_sdxl.py
--pretrained_model_name_or_path hf-internal-testing/tiny-sdxl-pipe
--train_data_dir docs/source/en/imgs
--learnable_property object
--placeholder_token <cat-toy>
--initializer_token a
--save_steps 1
--num_vectors 2
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--checkpointing_steps=1
--resume_from_checkpoint=checkpoint-2
--checkpoints_total_limit=2
""".split()
run_command(self._launch_args + resume_run_args)
# check checkpoint directories exist
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-2", "checkpoint-3"},
)