|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNet1DModel |
|
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, skip_mps, torch_device |
|
|
|
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class DanceDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = DanceDiffusionPipeline |
|
params = UNCONDITIONAL_AUDIO_GENERATION_PARAMS |
|
required_optional_params = PipelineTesterMixin.required_optional_params - { |
|
"callback", |
|
"latents", |
|
"callback_steps", |
|
"output_type", |
|
"num_images_per_prompt", |
|
} |
|
batch_params = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS |
|
test_attention_slicing = False |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet1DModel( |
|
block_out_channels=(32, 32, 64), |
|
extra_in_channels=16, |
|
sample_size=512, |
|
sample_rate=16_000, |
|
in_channels=2, |
|
out_channels=2, |
|
flip_sin_to_cos=True, |
|
use_timestep_embedding=False, |
|
time_embedding_type="fourier", |
|
mid_block_type="UNetMidBlock1D", |
|
down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"), |
|
up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"), |
|
) |
|
scheduler = IPNDMScheduler() |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"batch_size": 1, |
|
"generator": generator, |
|
"num_inference_steps": 4, |
|
} |
|
return inputs |
|
|
|
def test_dance_diffusion(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = DanceDiffusionPipeline(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = pipe(**inputs) |
|
audio = output.audios |
|
|
|
audio_slice = audio[0, -3:, -3:] |
|
|
|
assert audio.shape == (1, 2, components["unet"].sample_size) |
|
expected_slice = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000]) |
|
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
@skip_mps |
|
def test_save_load_local(self): |
|
return super().test_save_load_local() |
|
|
|
@skip_mps |
|
def test_dict_tuple_outputs_equivalent(self): |
|
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) |
|
|
|
@skip_mps |
|
def test_save_load_optional_components(self): |
|
return super().test_save_load_optional_components() |
|
|
|
@skip_mps |
|
def test_attention_slicing_forward_pass(self): |
|
return super().test_attention_slicing_forward_pass() |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=3e-3) |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class PipelineIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_dance_diffusion(self): |
|
device = torch_device |
|
|
|
pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k") |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.manual_seed(0) |
|
output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096) |
|
audio = output.audios |
|
|
|
audio_slice = audio[0, -3:, -3:] |
|
|
|
assert audio.shape == (1, 2, pipe.unet.config.sample_size) |
|
expected_slice = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020]) |
|
|
|
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_dance_diffusion_fp16(self): |
|
device = torch_device |
|
|
|
pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k", torch_dtype=torch.float16) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.manual_seed(0) |
|
output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096) |
|
audio = output.audios |
|
|
|
audio_slice = audio[0, -3:, -3:] |
|
|
|
assert audio.shape == (1, 2, pipe.unet.config.sample_size) |
|
expected_slice = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341]) |
|
|
|
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2 |
|
|