diffusers-sdxl-controlnet
/
tests
/pipelines
/latent_diffusion
/test_latent_diffusion_superresolution.py
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from diffusers import DDIMScheduler, LDMSuperResolutionPipeline, UNet2DModel, VQModel | |
from diffusers.utils import PIL_INTERPOLATION | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
load_image, | |
nightly, | |
require_torch, | |
torch_device, | |
) | |
enable_full_determinism() | |
class LDMSuperResolutionPipelineFastTests(unittest.TestCase): | |
def dummy_image(self): | |
batch_size = 1 | |
num_channels = 3 | |
sizes = (32, 32) | |
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) | |
return image | |
def dummy_uncond_unet(self): | |
torch.manual_seed(0) | |
model = UNet2DModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=6, | |
out_channels=3, | |
down_block_types=("DownBlock2D", "AttnDownBlock2D"), | |
up_block_types=("AttnUpBlock2D", "UpBlock2D"), | |
) | |
return model | |
def dummy_vq_model(self): | |
torch.manual_seed(0) | |
model = VQModel( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=3, | |
) | |
return model | |
def test_inference_superresolution(self): | |
device = "cpu" | |
unet = self.dummy_uncond_unet | |
scheduler = DDIMScheduler() | |
vqvae = self.dummy_vq_model | |
ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) | |
ldm.to(device) | |
ldm.set_progress_bar_config(disable=None) | |
init_image = self.dummy_image.to(device) | |
generator = torch.Generator(device=device).manual_seed(0) | |
image = ldm(image=init_image, generator=generator, num_inference_steps=2, output_type="np").images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_inference_superresolution_fp16(self): | |
unet = self.dummy_uncond_unet | |
scheduler = DDIMScheduler() | |
vqvae = self.dummy_vq_model | |
# put models in fp16 | |
unet = unet.half() | |
vqvae = vqvae.half() | |
ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) | |
ldm.to(torch_device) | |
ldm.set_progress_bar_config(disable=None) | |
init_image = self.dummy_image.to(torch_device) | |
image = ldm(init_image, num_inference_steps=2, output_type="np").images | |
assert image.shape == (1, 64, 64, 3) | |
class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase): | |
def test_inference_superresolution(self): | |
init_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
"/vq_diffusion/teddy_bear_pool.png" | |
) | |
init_image = init_image.resize((64, 64), resample=PIL_INTERPOLATION["lanczos"]) | |
ldm = LDMSuperResolutionPipeline.from_pretrained("duongna/ldm-super-resolution") | |
ldm.set_progress_bar_config(disable=None) | |
generator = torch.manual_seed(0) | |
image = ldm(image=init_image, generator=generator, num_inference_steps=20, output_type="np").images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 256, 256, 3) | |
expected_slice = np.array([0.7644, 0.7679, 0.7642, 0.7633, 0.7666, 0.7560, 0.7425, 0.7257, 0.6907]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |