|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel |
|
from diffusers.pipelines.semantic_stable_diffusion import SemanticStableDiffusionPipeline as StableDiffusionPipeline |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
nightly, |
|
require_torch_gpu, |
|
torch_device, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class SafeDiffusionPipelineFastTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@property |
|
def dummy_image(self): |
|
batch_size = 1 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) |
|
return image |
|
|
|
@property |
|
def dummy_cond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vae(self): |
|
torch.manual_seed(0) |
|
model = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
return CLIPTextModel(config) |
|
|
|
@property |
|
def dummy_extractor(self): |
|
def extract(*args, **kwargs): |
|
class Out: |
|
def __init__(self): |
|
self.pixel_values = torch.ones([0]) |
|
|
|
def to(self, device): |
|
self.pixel_values.to(device) |
|
return self |
|
|
|
return Out() |
|
|
|
return extract |
|
|
|
def test_semantic_diffusion_ddim(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
|
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.5753, 0.6114, 0.5001, 0.5034, 0.5470, 0.4729, 0.4971, 0.4867, 0.4867]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_semantic_diffusion_pndm(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
|
|
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.5122, 0.5712, 0.4825, 0.5053, 0.5646, 0.4769, 0.5179, 0.4894, 0.4994]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_semantic_diffusion_no_safety_checker(self): |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None |
|
) |
|
assert isinstance(pipe, StableDiffusionPipeline) |
|
assert isinstance(pipe.scheduler, LMSDiscreteScheduler) |
|
assert pipe.safety_checker is None |
|
|
|
image = pipe("example prompt", num_inference_steps=2).images[0] |
|
assert image is not None |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pipe.save_pretrained(tmpdirname) |
|
pipe = StableDiffusionPipeline.from_pretrained(tmpdirname) |
|
|
|
|
|
assert pipe.safety_checker is None |
|
image = pipe("example prompt", num_inference_steps=2).images[0] |
|
assert image is not None |
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU") |
|
def test_semantic_diffusion_fp16(self): |
|
"""Test that stable diffusion works with fp16""" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
unet = unet.half() |
|
vae = vae.half() |
|
bert = bert.half() |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
image = sd_pipe([prompt], num_inference_steps=2, output_type="np").images |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_positive_guidance(self): |
|
torch_device = "cuda" |
|
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "a photo of a cat" |
|
edit = { |
|
"editing_prompt": ["sunglasses"], |
|
"reverse_editing_direction": [False], |
|
"edit_warmup_steps": 10, |
|
"edit_guidance_scale": 6, |
|
"edit_threshold": 0.95, |
|
"edit_momentum_scale": 0.5, |
|
"edit_mom_beta": 0.6, |
|
} |
|
|
|
seed = 3 |
|
guidance_scale = 7 |
|
|
|
|
|
generator = torch.Generator(torch_device) |
|
generator.manual_seed(seed) |
|
output = pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=50, |
|
output_type="np", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = [ |
|
0.34673113, |
|
0.38492733, |
|
0.37597352, |
|
0.34086335, |
|
0.35650748, |
|
0.35579205, |
|
0.3384763, |
|
0.34340236, |
|
0.3573271, |
|
] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
|
|
generator.manual_seed(seed) |
|
output = pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=50, |
|
output_type="np", |
|
width=512, |
|
height=512, |
|
**edit, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = [ |
|
0.41887826, |
|
0.37728766, |
|
0.30138272, |
|
0.41416335, |
|
0.41664985, |
|
0.36283392, |
|
0.36191246, |
|
0.43364465, |
|
0.43001732, |
|
] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_negative_guidance(self): |
|
torch_device = "cuda" |
|
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "an image of a crowded boulevard, realistic, 4k" |
|
edit = { |
|
"editing_prompt": "crowd, crowded, people", |
|
"reverse_editing_direction": True, |
|
"edit_warmup_steps": 10, |
|
"edit_guidance_scale": 8.3, |
|
"edit_threshold": 0.9, |
|
"edit_momentum_scale": 0.5, |
|
"edit_mom_beta": 0.6, |
|
} |
|
|
|
seed = 9 |
|
guidance_scale = 7 |
|
|
|
|
|
generator = torch.Generator(torch_device) |
|
generator.manual_seed(seed) |
|
output = pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=50, |
|
output_type="np", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = [ |
|
0.43497998, |
|
0.91814065, |
|
0.7540739, |
|
0.55580205, |
|
0.8467265, |
|
0.5389691, |
|
0.62574506, |
|
0.58897763, |
|
0.50926757, |
|
] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
|
|
generator.manual_seed(seed) |
|
output = pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=50, |
|
output_type="np", |
|
width=512, |
|
height=512, |
|
**edit, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = [ |
|
0.3089719, |
|
0.30500144, |
|
0.29016042, |
|
0.30630964, |
|
0.325687, |
|
0.29419225, |
|
0.2908091, |
|
0.28723598, |
|
0.27696294, |
|
] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_multi_cond_guidance(self): |
|
torch_device = "cuda" |
|
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "a castle next to a river" |
|
edit = { |
|
"editing_prompt": ["boat on a river, boat", "monet, impression, sunrise"], |
|
"reverse_editing_direction": False, |
|
"edit_warmup_steps": [15, 18], |
|
"edit_guidance_scale": 6, |
|
"edit_threshold": [0.9, 0.8], |
|
"edit_momentum_scale": 0.5, |
|
"edit_mom_beta": 0.6, |
|
} |
|
|
|
seed = 48 |
|
guidance_scale = 7 |
|
|
|
|
|
generator = torch.Generator(torch_device) |
|
generator.manual_seed(seed) |
|
output = pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=50, |
|
output_type="np", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = [ |
|
0.75163555, |
|
0.76037145, |
|
0.61785, |
|
0.9189673, |
|
0.8627701, |
|
0.85189694, |
|
0.8512813, |
|
0.87012076, |
|
0.8312857, |
|
] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
|
|
generator.manual_seed(seed) |
|
output = pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=50, |
|
output_type="np", |
|
width=512, |
|
height=512, |
|
**edit, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = [ |
|
0.73553365, |
|
0.7537271, |
|
0.74341905, |
|
0.66480356, |
|
0.6472925, |
|
0.63039416, |
|
0.64812905, |
|
0.6749717, |
|
0.6517102, |
|
] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_guidance_fp16(self): |
|
torch_device = "cuda" |
|
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "a photo of a cat" |
|
edit = { |
|
"editing_prompt": ["sunglasses"], |
|
"reverse_editing_direction": [False], |
|
"edit_warmup_steps": 10, |
|
"edit_guidance_scale": 6, |
|
"edit_threshold": 0.95, |
|
"edit_momentum_scale": 0.5, |
|
"edit_mom_beta": 0.6, |
|
} |
|
|
|
seed = 3 |
|
guidance_scale = 7 |
|
|
|
|
|
generator = torch.Generator(torch_device) |
|
generator.manual_seed(seed) |
|
output = pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=50, |
|
output_type="np", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = [ |
|
0.34887695, |
|
0.3876953, |
|
0.375, |
|
0.34423828, |
|
0.3581543, |
|
0.35717773, |
|
0.3383789, |
|
0.34570312, |
|
0.359375, |
|
] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
|
|
generator.manual_seed(seed) |
|
output = pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=50, |
|
output_type="np", |
|
width=512, |
|
height=512, |
|
**edit, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = [ |
|
0.42285156, |
|
0.36914062, |
|
0.29077148, |
|
0.42041016, |
|
0.41918945, |
|
0.35498047, |
|
0.3618164, |
|
0.4423828, |
|
0.43115234, |
|
] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|