diffusers-sdxl-controlnet / tests /pipelines /stable_diffusion_2 /test_stable_diffusion_latent_upscale.py
svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
10.7 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def check_same_shape(tensor_list):
shapes = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:])
class StableDiffusionLatentUpscalePipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionLatentUpscalePipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"height",
"width",
"cross_attention_kwargs",
"negative_prompt_embeds",
"prompt_embeds",
}
required_optional_params = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
image_params = frozenset(
[]
) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
image_latents_params = frozenset([])
@property
def dummy_image(self):
batch_size = 1
num_channels = 4
sizes = (16, 16)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
def get_dummy_components(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
act_fn="gelu",
attention_head_dim=8,
norm_num_groups=None,
block_out_channels=[32, 32, 64, 64],
time_cond_proj_dim=160,
conv_in_kernel=1,
conv_out_kernel=1,
cross_attention_dim=32,
down_block_types=(
"KDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
),
in_channels=8,
mid_block_type=None,
only_cross_attention=False,
out_channels=5,
resnet_time_scale_shift="scale_shift",
time_embedding_type="fourier",
timestep_post_act="gelu",
up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),
)
vae = AutoencoderKL(
block_out_channels=[32, 32, 64, 64],
in_channels=3,
out_channels=3,
down_block_types=[
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
scheduler = EulerDiscreteScheduler(prediction_type="sample")
text_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
hidden_act="quick_gelu",
projection_dim=512,
)
text_encoder = CLIPTextModel(text_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": model.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": self.dummy_image.cpu(),
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 256, 256, 3))
expected_slice = np.array(
[0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055]
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=7e-3)
def test_sequential_cpu_offload_forward_pass(self):
super().test_sequential_cpu_offload_forward_pass(expected_max_diff=3e-3)
def test_dict_tuple_outputs_equivalent(self):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=7e-3)
def test_pt_np_pil_outputs_equivalent(self):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3)
def test_save_load_local(self):
super().test_save_load_local(expected_max_difference=3e-3)
def test_save_load_optional_components(self):
super().test_save_load_optional_components(expected_max_difference=3e-3)
def test_karras_schedulers_shape(self):
skip_schedulers = [
"DDIMScheduler",
"DDPMScheduler",
"PNDMScheduler",
"HeunDiscreteScheduler",
"EulerAncestralDiscreteScheduler",
"KDPM2DiscreteScheduler",
"KDPM2AncestralDiscreteScheduler",
"DPMSolverSDEScheduler",
"EDMEulerScheduler",
]
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=True)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 2
outputs = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
scheduler_cls = getattr(diffusers, scheduler_enum.name)
pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config)
output = pipe(**inputs)[0]
outputs.append(output)
assert check_same_shape(outputs)
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=5e-1)
@require_torch_gpu
@slow
class StableDiffusionLatentUpscalePipelineIntegrationTests(unittest.TestCase):
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_latent_upscaler_fp16(self):
generator = torch.manual_seed(33)
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
pipe.to("cuda")
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
)
upscaler.to("cuda")
prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic"
low_res_latents = pipe(prompt, generator=generator, output_type="latent").images
image = upscaler(
prompt=prompt,
image=low_res_latents,
num_inference_steps=20,
guidance_scale=0,
generator=generator,
output_type="np",
).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy"
)
assert np.abs((expected_image - image).mean()) < 5e-2
def test_latent_upscaler_fp16_image(self):
generator = torch.manual_seed(33)
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
)
upscaler.to("cuda")
prompt = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas"
low_res_img = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png"
)
image = upscaler(
prompt=prompt,
image=low_res_img,
num_inference_steps=20,
guidance_scale=0,
generator=generator,
output_type="np",
).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy"
)
assert np.abs((expected_image - image).max()) < 5e-2