diffusers-sdxl-controlnet
/
tests
/pipelines
/stable_video_diffusion
/test_stable_video_diffusion.py
import gc | |
import random | |
import tempfile | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPVisionConfig, | |
CLIPVisionModelWithProjection, | |
) | |
import diffusers | |
from diffusers import ( | |
AutoencoderKLTemporalDecoder, | |
EulerDiscreteScheduler, | |
StableVideoDiffusionPipeline, | |
UNetSpatioTemporalConditionModel, | |
) | |
from diffusers.utils import is_accelerate_available, is_accelerate_version, load_image, logging | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.testing_utils import ( | |
CaptureLogger, | |
enable_full_determinism, | |
floats_tensor, | |
numpy_cosine_similarity_distance, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
def to_np(tensor): | |
if isinstance(tensor, torch.Tensor): | |
tensor = tensor.detach().cpu().numpy() | |
return tensor | |
class StableVideoDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = StableVideoDiffusionPipeline | |
params = frozenset(["image"]) | |
batch_params = frozenset(["image", "generator"]) | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"generator", | |
"latents", | |
"return_dict", | |
] | |
) | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNetSpatioTemporalConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=8, | |
out_channels=4, | |
down_block_types=( | |
"CrossAttnDownBlockSpatioTemporal", | |
"DownBlockSpatioTemporal", | |
), | |
up_block_types=("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal"), | |
cross_attention_dim=32, | |
num_attention_heads=8, | |
projection_class_embeddings_input_dim=96, | |
addition_time_embed_dim=32, | |
) | |
scheduler = EulerDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
interpolation_type="linear", | |
num_train_timesteps=1000, | |
prediction_type="v_prediction", | |
sigma_max=700.0, | |
sigma_min=0.002, | |
steps_offset=1, | |
timestep_spacing="leading", | |
timestep_type="continuous", | |
trained_betas=None, | |
use_karras_sigmas=True, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKLTemporalDecoder( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
latent_channels=4, | |
) | |
torch.manual_seed(0) | |
config = CLIPVisionConfig( | |
hidden_size=32, | |
projection_dim=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
image_size=32, | |
intermediate_size=37, | |
patch_size=1, | |
) | |
image_encoder = CLIPVisionModelWithProjection(config) | |
torch.manual_seed(0) | |
feature_extractor = CLIPImageProcessor(crop_size=32, size=32) | |
components = { | |
"unet": unet, | |
"image_encoder": image_encoder, | |
"scheduler": scheduler, | |
"vae": vae, | |
"feature_extractor": feature_extractor, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
image = floats_tensor((1, 3, 32, 32), rng=random.Random(0)).to(device) | |
inputs = { | |
"generator": generator, | |
"image": image, | |
"num_inference_steps": 2, | |
"output_type": "pt", | |
"min_guidance_scale": 1.0, | |
"max_guidance_scale": 2.5, | |
"num_frames": 2, | |
"height": 32, | |
"width": 32, | |
} | |
return inputs | |
def test_attention_slicing_forward_pass(self): | |
pass | |
def test_inference_batch_single_identical( | |
self, | |
batch_size=2, | |
expected_max_diff=1e-4, | |
): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for components in pipe.components.values(): | |
if hasattr(components, "set_default_attn_processor"): | |
components.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
# Reset generator in case it is has been used in self.get_dummy_inputs | |
inputs["generator"] = torch.Generator("cpu").manual_seed(0) | |
logger = logging.get_logger(pipe.__module__) | |
logger.setLevel(level=diffusers.logging.FATAL) | |
# batchify inputs | |
batched_inputs = {} | |
batched_inputs.update(inputs) | |
batched_inputs["generator"] = [torch.Generator("cpu").manual_seed(0) for i in range(batch_size)] | |
batched_inputs["image"] = torch.cat([inputs["image"]] * batch_size, dim=0) | |
output = pipe(**inputs).frames | |
output_batch = pipe(**batched_inputs).frames | |
assert len(output_batch) == batch_size | |
max_diff = np.abs(to_np(output_batch[0]) - to_np(output[0])).max() | |
assert max_diff < expected_max_diff | |
def test_inference_batch_consistent(self): | |
pass | |
def test_np_output_type(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["output_type"] = "np" | |
output = pipe(**inputs).frames | |
self.assertTrue(isinstance(output, np.ndarray)) | |
self.assertEqual(len(output.shape), 5) | |
def test_dict_tuple_outputs_equivalent(self, expected_max_difference=1e-4): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
generator_device = "cpu" | |
output = pipe(**self.get_dummy_inputs(generator_device)).frames[0] | |
output_tuple = pipe(**self.get_dummy_inputs(generator_device), return_dict=False)[0] | |
max_diff = np.abs(to_np(output) - to_np(output_tuple)).max() | |
self.assertLess(max_diff, expected_max_difference) | |
def test_float16_inference(self, expected_max_diff=5e-2): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
components = self.get_dummy_components() | |
pipe_fp16 = self.pipeline_class(**components) | |
for component in pipe_fp16.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe_fp16.to(torch_device, torch.float16) | |
pipe_fp16.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output = pipe(**inputs).frames[0] | |
fp16_inputs = self.get_dummy_inputs(torch_device) | |
output_fp16 = pipe_fp16(**fp16_inputs).frames[0] | |
max_diff = np.abs(to_np(output) - to_np(output_fp16)).max() | |
self.assertLess(max_diff, expected_max_diff, "The outputs of the fp16 and fp32 pipelines are too different.") | |
def test_save_load_float16(self, expected_max_diff=1e-2): | |
components = self.get_dummy_components() | |
for name, module in components.items(): | |
if hasattr(module, "half"): | |
components[name] = module.to(torch_device).half() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output = pipe(**inputs).frames[0] | |
with tempfile.TemporaryDirectory() as tmpdir: | |
pipe.save_pretrained(tmpdir) | |
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16) | |
for component in pipe_loaded.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe_loaded.to(torch_device) | |
pipe_loaded.set_progress_bar_config(disable=None) | |
for name, component in pipe_loaded.components.items(): | |
if hasattr(component, "dtype"): | |
self.assertTrue( | |
component.dtype == torch.float16, | |
f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.", | |
) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_loaded = pipe_loaded(**inputs).frames[0] | |
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
self.assertLess( | |
max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading." | |
) | |
def test_save_load_optional_components(self, expected_max_difference=1e-4): | |
if not hasattr(self.pipeline_class, "_optional_components"): | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
# set all optional components to None | |
for optional_component in pipe._optional_components: | |
setattr(pipe, optional_component, None) | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
output = pipe(**inputs).frames[0] | |
with tempfile.TemporaryDirectory() as tmpdir: | |
pipe.save_pretrained(tmpdir, safe_serialization=False) | |
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) | |
for component in pipe_loaded.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe_loaded.to(torch_device) | |
pipe_loaded.set_progress_bar_config(disable=None) | |
for optional_component in pipe._optional_components: | |
self.assertTrue( | |
getattr(pipe_loaded, optional_component) is None, | |
f"`{optional_component}` did not stay set to None after loading.", | |
) | |
inputs = self.get_dummy_inputs(generator_device) | |
output_loaded = pipe_loaded(**inputs).frames[0] | |
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
self.assertLess(max_diff, expected_max_difference) | |
def test_save_load_local(self, expected_max_difference=9e-4): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output = pipe(**inputs).frames[0] | |
logger = logging.get_logger("diffusers.pipelines.pipeline_utils") | |
logger.setLevel(diffusers.logging.INFO) | |
with tempfile.TemporaryDirectory() as tmpdir: | |
pipe.save_pretrained(tmpdir, safe_serialization=False) | |
with CaptureLogger(logger) as cap_logger: | |
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) | |
for name in pipe_loaded.components.keys(): | |
if name not in pipe_loaded._optional_components: | |
assert name in str(cap_logger) | |
pipe_loaded.to(torch_device) | |
pipe_loaded.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_loaded = pipe_loaded(**inputs).frames[0] | |
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
self.assertLess(max_diff, expected_max_difference) | |
def test_to_device(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.to("cpu") | |
model_devices = [ | |
component.device.type for component in pipe.components.values() if hasattr(component, "device") | |
] | |
self.assertTrue(all(device == "cpu" for device in model_devices)) | |
output_cpu = pipe(**self.get_dummy_inputs("cpu")).frames[0] | |
self.assertTrue(np.isnan(output_cpu).sum() == 0) | |
pipe.to("cuda") | |
model_devices = [ | |
component.device.type for component in pipe.components.values() if hasattr(component, "device") | |
] | |
self.assertTrue(all(device == "cuda" for device in model_devices)) | |
output_cuda = pipe(**self.get_dummy_inputs("cuda")).frames[0] | |
self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0) | |
def test_to_dtype(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | |
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes)) | |
pipe.to(dtype=torch.float16) | |
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | |
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes)) | |
def test_sequential_cpu_offload_forward_pass(self, expected_max_diff=1e-4): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
output_without_offload = pipe(**inputs).frames[0] | |
pipe.enable_sequential_cpu_offload() | |
inputs = self.get_dummy_inputs(generator_device) | |
output_with_offload = pipe(**inputs).frames[0] | |
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() | |
self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results") | |
def test_model_cpu_offload_forward_pass(self, expected_max_diff=2e-4): | |
generator_device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(generator_device) | |
output_without_offload = pipe(**inputs).frames[0] | |
pipe.enable_model_cpu_offload() | |
inputs = self.get_dummy_inputs(generator_device) | |
output_with_offload = pipe(**inputs).frames[0] | |
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() | |
self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results") | |
offloaded_modules = [ | |
v | |
for k, v in pipe.components.items() | |
if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload | |
] | |
( | |
self.assertTrue(all(v.device.type == "cpu" for v in offloaded_modules)), | |
f"Not offloaded: {[v for v in offloaded_modules if v.device.type != 'cpu']}", | |
) | |
def test_xformers_attention_forwardGenerator_pass(self): | |
expected_max_diff = 9e-4 | |
if not self.test_xformers_attention: | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_without_offload = pipe(**inputs).frames[0] | |
output_without_offload = ( | |
output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload | |
) | |
pipe.enable_xformers_memory_efficient_attention() | |
inputs = self.get_dummy_inputs(torch_device) | |
output_with_offload = pipe(**inputs).frames[0] | |
output_with_offload = ( | |
output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload | |
) | |
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() | |
self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results") | |
def test_disable_cfg(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["max_guidance_scale"] = 1.0 | |
output = pipe(**inputs).frames | |
self.assertEqual(len(output.shape), 5) | |
class StableVideoDiffusionPipelineSlowTests(unittest.TestCase): | |
def setUp(self): | |
# clean up the VRAM before each test | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_sd_video(self): | |
pipe = StableVideoDiffusionPipeline.from_pretrained( | |
"stabilityai/stable-video-diffusion-img2vid", | |
variant="fp16", | |
torch_dtype=torch.float16, | |
) | |
pipe.enable_model_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png?download=true" | |
) | |
generator = torch.Generator("cpu").manual_seed(0) | |
num_frames = 3 | |
output = pipe( | |
image=image, | |
num_frames=num_frames, | |
generator=generator, | |
num_inference_steps=3, | |
output_type="np", | |
) | |
image = output.frames[0] | |
assert image.shape == (num_frames, 576, 1024, 3) | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.8592, 0.8645, 0.8499, 0.8722, 0.8769, 0.8421, 0.8557, 0.8528, 0.8285]) | |
assert numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice.flatten()) < 1e-3 | |