svjack's picture
Upload 1392 files
43b7e92 verified
|
raw
history blame
13.3 kB

Text2Video-Zero

Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators is by Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang Wang, Shant Navasardyan, Humphrey Shi.

Text2Video-Zero enables zero-shot video generation using either:

  1. A textual prompt
  2. A prompt combined with guidance from poses or edges
  3. Video Instruct-Pix2Pix (instruction-guided video editing)

Results are temporally consistent and closely follow the guidance and textual prompts.

teaser-img

The abstract from the paper is:

Recent text-to-video generation approaches rely on computationally heavy training and require large-scale video datasets. In this paper, we introduce a new task of zero-shot text-to-video generation and propose a low-cost approach (without any training or optimization) by leveraging the power of existing text-to-image synthesis methods (e.g., Stable Diffusion), making them suitable for the video domain. Our key modifications include (i) enriching the latent codes of the generated frames with motion dynamics to keep the global scene and the background time consistent; and (ii) reprogramming frame-level self-attention using a new cross-frame attention of each frame on the first frame, to preserve the context, appearance, and identity of the foreground object. Experiments show that this leads to low overhead, yet high-quality and remarkably consistent video generation. Moreover, our approach is not limited to text-to-video synthesis but is also applicable to other tasks such as conditional and content-specialized video generation, and Video Instruct-Pix2Pix, i.e., instruction-guided video editing. As experiments show, our method performs comparably or sometimes better than recent approaches, despite not being trained on additional video data.

You can find additional information about Text2Video-Zero on the project page, paper, and original codebase.

Usage example

Text-To-Video

To generate a video from prompt, run the following Python code:

import torch
from diffusers import TextToVideoZeroPipeline

model_id = "runwayml/stable-diffusion-v1-5"
pipe = TextToVideoZeroPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

prompt = "A panda is playing guitar on times square"
result = pipe(prompt=prompt).images
result = [(r * 255).astype("uint8") for r in result]
imageio.mimsave("video.mp4", result, fps=4)

You can change these parameters in the pipeline call:

  • Motion field strength (see the paper, Sect. 3.3.1):
    • motion_field_strength_x and motion_field_strength_y. Default: motion_field_strength_x=12, motion_field_strength_y=12
  • T and T' (see the paper, Sect. 3.3.1)
    • t0 and t1 in the range {0, ..., num_inference_steps}. Default: t0=45, t1=48
  • Video length:
    • video_length, the number of frames video_length to be generated. Default: video_length=8

We can also generate longer videos by doing the processing in a chunk-by-chunk manner:

import torch
from diffusers import TextToVideoZeroPipeline
import numpy as np

model_id = "runwayml/stable-diffusion-v1-5"
pipe = TextToVideoZeroPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
seed = 0
video_length = 24  #24 ÷ 4fps = 6 seconds
chunk_size = 8
prompt = "A panda is playing guitar on times square"

# Generate the video chunk-by-chunk
result = []
chunk_ids = np.arange(0, video_length, chunk_size - 1)
generator = torch.Generator(device="cuda")
for i in range(len(chunk_ids)):
    print(f"Processing chunk {i + 1} / {len(chunk_ids)}")
    ch_start = chunk_ids[i]
    ch_end = video_length if i == len(chunk_ids) - 1 else chunk_ids[i + 1]
    # Attach the first frame for Cross Frame Attention
    frame_ids = [0] + list(range(ch_start, ch_end))
    # Fix the seed for the temporal consistency
    generator.manual_seed(seed)
    output = pipe(prompt=prompt, video_length=len(frame_ids), generator=generator, frame_ids=frame_ids)
    result.append(output.images[1:])

# Concatenate chunks and save
result = np.concatenate(result)
result = [(r * 255).astype("uint8") for r in result]
imageio.mimsave("video.mp4", result, fps=4)
  • SDXL Support

In order to use the SDXL model when generating a video from prompt, use the TextToVideoZeroSDXLPipeline pipeline:

import torch
from diffusers import TextToVideoZeroSDXLPipeline

model_id = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = TextToVideoZeroSDXLPipeline.from_pretrained(
    model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True
).to("cuda")

Text-To-Video with Pose Control

To generate a video from prompt with additional pose control

  1. Download a demo video

    from huggingface_hub import hf_hub_download
    
    filename = "__assets__/poses_skeleton_gifs/dance1_corr.mp4"
    repo_id = "PAIR/Text2Video-Zero"
    video_path = hf_hub_download(repo_type="space", repo_id=repo_id, filename=filename)
    
  2. Read video containing extracted pose images

    from PIL import Image
    import imageio
    
    reader = imageio.get_reader(video_path, "ffmpeg")
    frame_count = 8
    pose_images = [Image.fromarray(reader.get_data(i)) for i in range(frame_count)]
    

    To extract pose from actual video, read ControlNet documentation.

  3. Run StableDiffusionControlNetPipeline with our custom attention processor

    import torch
    from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
    from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
    
    model_id = "runwayml/stable-diffusion-v1-5"
    controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16)
    pipe = StableDiffusionControlNetPipeline.from_pretrained(
        model_id, controlnet=controlnet, torch_dtype=torch.float16
    ).to("cuda")
    
    # Set the attention processor
    pipe.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
    pipe.controlnet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
    
    # fix latents for all frames
    latents = torch.randn((1, 4, 64, 64), device="cuda", dtype=torch.float16).repeat(len(pose_images), 1, 1, 1)
    
    prompt = "Darth Vader dancing in a desert"
    result = pipe(prompt=[prompt] * len(pose_images), image=pose_images, latents=latents).images
    imageio.mimsave("video.mp4", result, fps=4)
    
  • SDXL Support

    Since our attention processor also works with SDXL, it can be utilized to generate a video from prompt using ControlNet models powered by SDXL:
    import torch
    from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel
    from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
    
    controlnet_model_id = 'thibaud/controlnet-openpose-sdxl-1.0'
    model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
    
    controlnet = ControlNetModel.from_pretrained(controlnet_model_id, torch_dtype=torch.float16)
    pipe = StableDiffusionControlNetPipeline.from_pretrained(
        model_id, controlnet=controlnet, torch_dtype=torch.float16
    ).to('cuda')
    
    # Set the attention processor
    pipe.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
    pipe.controlnet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
    
    # fix latents for all frames
    latents = torch.randn((1, 4, 128, 128), device="cuda", dtype=torch.float16).repeat(len(pose_images), 1, 1, 1)
    
    prompt = "Darth Vader dancing in a desert"
    result = pipe(prompt=[prompt] * len(pose_images), image=pose_images, latents=latents).images
    imageio.mimsave("video.mp4", result, fps=4)
    

Text-To-Video with Edge Control

To generate a video from prompt with additional Canny edge control, follow the same steps described above for pose-guided generation using Canny edge ControlNet model.

Video Instruct-Pix2Pix

To perform text-guided video editing (with InstructPix2Pix):

  1. Download a demo video

    from huggingface_hub import hf_hub_download
    
    filename = "__assets__/pix2pix video/camel.mp4"
    repo_id = "PAIR/Text2Video-Zero"
    video_path = hf_hub_download(repo_type="space", repo_id=repo_id, filename=filename)
    
  2. Read video from path

    from PIL import Image
    import imageio
    
    reader = imageio.get_reader(video_path, "ffmpeg")
    frame_count = 8
    video = [Image.fromarray(reader.get_data(i)) for i in range(frame_count)]
    
  3. Run StableDiffusionInstructPix2PixPipeline with our custom attention processor

    import torch
    from diffusers import StableDiffusionInstructPix2PixPipeline
    from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
    
    model_id = "timbrooks/instruct-pix2pix"
    pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
    pipe.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=3))
    
    prompt = "make it Van Gogh Starry Night style"
    result = pipe(prompt=[prompt] * len(video), image=video).images
    imageio.mimsave("edited_video.mp4", result, fps=4)
    

DreamBooth specialization

Methods Text-To-Video, Text-To-Video with Pose Control and Text-To-Video with Edge Control can run with custom DreamBooth models, as shown below for Canny edge ControlNet model and Avatar style DreamBooth model:

  1. Download a demo video

    from huggingface_hub import hf_hub_download
    
    filename = "__assets__/canny_videos_mp4/girl_turning.mp4"
    repo_id = "PAIR/Text2Video-Zero"
    video_path = hf_hub_download(repo_type="space", repo_id=repo_id, filename=filename)
    
  2. Read video from path

    from PIL import Image
    import imageio
    
    reader = imageio.get_reader(video_path, "ffmpeg")
    frame_count = 8
    canny_edges = [Image.fromarray(reader.get_data(i)) for i in range(frame_count)]
    
  3. Run StableDiffusionControlNetPipeline with custom trained DreamBooth model

    import torch
    from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
    from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
    
    # set model id to custom model
    model_id = "PAIR/text2video-zero-controlnet-canny-avatar"
    controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
    pipe = StableDiffusionControlNetPipeline.from_pretrained(
        model_id, controlnet=controlnet, torch_dtype=torch.float16
    ).to("cuda")
    
    # Set the attention processor
    pipe.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
    pipe.controlnet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
    
    # fix latents for all frames
    latents = torch.randn((1, 4, 64, 64), device="cuda", dtype=torch.float16).repeat(len(canny_edges), 1, 1, 1)
    
    prompt = "oil painting of a beautiful girl avatar style"
    result = pipe(prompt=[prompt] * len(canny_edges), image=canny_edges, latents=latents).images
    imageio.mimsave("video.mp4", result, fps=4)
    

You can filter out some available DreamBooth-trained models with this link.

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

TextToVideoZeroPipeline

[[autodoc]] TextToVideoZeroPipeline - all - call

TextToVideoZeroSDXLPipeline

[[autodoc]] TextToVideoZeroSDXLPipeline - all - call

TextToVideoPipelineOutput

[[autodoc]] pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.TextToVideoPipelineOutput