| <!--Copyright 2024 The HuggingFace Team. All rights reserved. | |
| Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | |
| the License. You may obtain a copy of the License at | |
| http://www.apache.org/licenses/LICENSE-2.0 | |
| Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | |
| an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
| specific language governing permissions and limitations under the License. | |
| --> | |
| # Textual inversion | |
| [[open-in-colab]] | |
| The [`StableDiffusionPipeline`] supports textual inversion, a technique that enables a model like Stable Diffusion to learn a new concept from just a few sample images. This gives you more control over the generated images and allows you to tailor the model towards specific concepts. You can get started quickly with a collection of community created concepts in the [Stable Diffusion Conceptualizer](https://huggingface.co/spaces/sd-concepts-library/stable-diffusion-conceptualizer). | |
| This guide will show you how to run inference with textual inversion using a pre-learned concept from the Stable Diffusion Conceptualizer. If you're interested in teaching a model new concepts with textual inversion, take a look at the [Textual Inversion](../training/text_inversion) training guide. | |
| Import the necessary libraries: | |
| ```py | |
| import torch | |
| from diffusers import StableDiffusionPipeline | |
| from diffusers.utils import make_image_grid | |
| ``` | |
| ## Stable Diffusion 1 and 2 | |
| Pick a Stable Diffusion checkpoint and a pre-learned concept from the [Stable Diffusion Conceptualizer](https://huggingface.co/spaces/sd-concepts-library/stable-diffusion-conceptualizer): | |
| ```py | |
| pretrained_model_name_or_path = "runwayml/stable-diffusion-v1-5" | |
| repo_id_embeds = "sd-concepts-library/cat-toy" | |
| ``` | |
| Now you can load a pipeline, and pass the pre-learned concept to it: | |
| ```py | |
| pipeline = StableDiffusionPipeline.from_pretrained( | |
| pretrained_model_name_or_path, torch_dtype=torch.float16, use_safetensors=True | |
| ).to("cuda") | |
| pipeline.load_textual_inversion(repo_id_embeds) | |
| ``` | |
| Create a prompt with the pre-learned concept by using the special placeholder token `<cat-toy>`, and choose the number of samples and rows of images you'd like to generate: | |
| ```py | |
| prompt = "a grafitti in a favela wall with a <cat-toy> on it" | |
| num_samples_per_row = 2 | |
| num_rows = 2 | |
| ``` | |
| Then run the pipeline (feel free to adjust the parameters like `num_inference_steps` and `guidance_scale` to see how they affect image quality), save the generated images and visualize them with the helper function you created at the beginning: | |
| ```py | |
| all_images = [] | |
| for _ in range(num_rows): | |
| images = pipeline(prompt, num_images_per_prompt=num_samples_per_row, num_inference_steps=50, guidance_scale=7.5).images | |
| all_images.extend(images) | |
| grid = make_image_grid(all_images, num_rows, num_samples_per_row) | |
| grid | |
| ``` | |
| <div class="flex justify-center"> | |
| <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/textual_inversion_inference.png"> | |
| </div> | |
| ## Stable Diffusion XL | |
| Stable Diffusion XL (SDXL) can also use textual inversion vectors for inference. In contrast to Stable Diffusion 1 and 2, SDXL has two text encoders so you'll need two textual inversion embeddings - one for each text encoder model. | |
| Let's download the SDXL textual inversion embeddings and have a closer look at it's structure: | |
| ```py | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| file = hf_hub_download("dn118/unaestheticXL", filename="unaestheticXLv31.safetensors") | |
| state_dict = load_file(file) | |
| state_dict | |
| ``` | |
| ``` | |
| {'clip_g': tensor([[ 0.0077, -0.0112, 0.0065, ..., 0.0195, 0.0159, 0.0275], | |
| ..., | |
| [-0.0170, 0.0213, 0.0143, ..., -0.0302, -0.0240, -0.0362]], | |
| 'clip_l': tensor([[ 0.0023, 0.0192, 0.0213, ..., -0.0385, 0.0048, -0.0011], | |
| ..., | |
| [ 0.0475, -0.0508, -0.0145, ..., 0.0070, -0.0089, -0.0163]], | |
| ``` | |
| There are two tensors, `"clip_g"` and `"clip_l"`. | |
| `"clip_g"` corresponds to the bigger text encoder in SDXL and refers to | |
| `pipe.text_encoder_2` and `"clip_l"` refers to `pipe.text_encoder`. | |
| Now you can load each tensor separately by passing them along with the correct text encoder and tokenizer | |
| to [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`]: | |
| ```py | |
| from diffusers import AutoPipelineForText2Image | |
| import torch | |
| pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", variant="fp16", torch_dtype=torch.float16) | |
| pipe.to("cuda") | |
| pipe.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) | |
| pipe.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) | |
| # the embedding should be used as a negative embedding, so we pass it as a negative prompt | |
| generator = torch.Generator().manual_seed(33) | |
| image = pipe("a woman standing in front of a mountain", negative_prompt="unaestheticXLv31", generator=generator).images[0] | |
| image | |
| ``` | |