|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import torch |
|
|
|
from diffusers import StableCascadeUNet |
|
from diffusers.utils import logging |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
require_torch_gpu, |
|
slow, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
enable_full_determinism() |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableCascadeUNetSingleFileTest(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_single_file_components_stage_b(self): |
|
model_single_file = StableCascadeUNet.from_single_file( |
|
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_bf16.safetensors", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
model = StableCascadeUNet.from_pretrained( |
|
"stabilityai/stable-cascade", variant="bf16", subfolder="decoder", use_safetensors=True |
|
) |
|
|
|
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] |
|
for param_name, param_value in model_single_file.config.items(): |
|
if param_name in PARAMS_TO_IGNORE: |
|
continue |
|
assert ( |
|
model.config[param_name] == param_value |
|
), f"{param_name} differs between single file loading and pretrained loading" |
|
|
|
def test_single_file_components_stage_b_lite(self): |
|
model_single_file = StableCascadeUNet.from_single_file( |
|
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite_bf16.safetensors", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
model = StableCascadeUNet.from_pretrained( |
|
"stabilityai/stable-cascade", variant="bf16", subfolder="decoder_lite" |
|
) |
|
|
|
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] |
|
for param_name, param_value in model_single_file.config.items(): |
|
if param_name in PARAMS_TO_IGNORE: |
|
continue |
|
assert ( |
|
model.config[param_name] == param_value |
|
), f"{param_name} differs between single file loading and pretrained loading" |
|
|
|
def test_single_file_components_stage_c(self): |
|
model_single_file = StableCascadeUNet.from_single_file( |
|
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_c_bf16.safetensors", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
model = StableCascadeUNet.from_pretrained( |
|
"stabilityai/stable-cascade-prior", variant="bf16", subfolder="prior" |
|
) |
|
|
|
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] |
|
for param_name, param_value in model_single_file.config.items(): |
|
if param_name in PARAMS_TO_IGNORE: |
|
continue |
|
assert ( |
|
model.config[param_name] == param_value |
|
), f"{param_name} differs between single file loading and pretrained loading" |
|
|
|
def test_single_file_components_stage_c_lite(self): |
|
model_single_file = StableCascadeUNet.from_single_file( |
|
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_c_lite_bf16.safetensors", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
model = StableCascadeUNet.from_pretrained( |
|
"stabilityai/stable-cascade-prior", variant="bf16", subfolder="prior_lite" |
|
) |
|
|
|
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] |
|
for param_name, param_value in model_single_file.config.items(): |
|
if param_name in PARAMS_TO_IGNORE: |
|
continue |
|
assert ( |
|
model.config[param_name] == param_value |
|
), f"{param_name} differs between single file loading and pretrained loading" |
|
|