distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.88
  • Loss: 0.5101

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 19
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Validation Loss
2.1142 1.0 57 0.5 1.9842
1.5086 2.0 114 0.63 1.4646
1.1112 3.0 171 0.76 1.1176
1.0085 4.0 228 0.74 0.9412
0.7851 5.0 285 0.8 0.7978
0.6372 6.0 342 0.78 0.7533
0.5404 7.0 399 0.75 0.7206
0.4701 8.0 456 0.8 0.6551
0.4362 9.0 513 0.77 0.6712
0.3737 10.0 570 0.81 0.6202
0.321 11.0 627 0.78 0.6756
0.2533 12.0 684 0.84 0.5602
0.326 13.0 741 0.84 0.5706
0.1789 14.0 798 0.83 0.5736
0.1841 15.0 855 0.85 0.5379
0.2496 16.0 912 0.87 0.5518
0.2002 17.0 969 0.86 0.5220
0.1164 18.0 1026 0.86 0.5213
0.096 19.0 1083 0.88 0.5101

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.0
  • Tokenizers 0.15.1
Downloads last month
15
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for swan387/distilhubert-finetuned-gtzan

Finetuned
(404)
this model

Dataset used to train swan387/distilhubert-finetuned-gtzan

Evaluation results