m-polignano-uniba's picture
Update README.md
fa1a068 verified
|
raw
history blame
10.3 kB
metadata
datasets:
  - gsarti/clean_mc4_it
  - Chat-Error/wizard_alpaca_dolly_orca
  - jondurbin/truthy-dpo-v0.1
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_creator: Marco Polignano - SWAP Research Group
language:
  - en
  - it
metrics:
  - accuracy
pipeline_tag: text-generation
tags:
  - facebook
  - meta
  - pythorch
  - llama
  - llama-3
  - llamantino
library_name: transformers
license: llama3
llamantino3_anita

LLaMAntino-3-ANITA-8B-Inst-DPO-ITA is a model of the LLaMAntino - Large Language Models family. The model is an instruction-tuned version of Meta-Llama-3-8b-instruct (a fine-tuned LLaMA 3 model). This model version aims to be the a Multilingual Model ๐Ÿ -- EN ๐Ÿ‡บ๐Ÿ‡ธ + ITA๐Ÿ‡ฎ๐Ÿ‡น -- to further fine-tune for the Specific Italian Task

The ๐ŸŒŸANITA project๐ŸŒŸ *(Advanced Natural-based interaction for the ITAlian language)* wants to provide Italian NLP researchers with an improved model the for Italian Language ๐Ÿ‡ฎ๐Ÿ‡น use cases.


Model Details

Last Update: 10/05/2024

https://github.com/marcopoli/LLaMAntino-3-ANITA

Model HF EXL2 GGUF AWQ
m-polignano-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA Link Link Link Link

Specifications

  • Model developers:
    Ph.D. Marco Polignano - University of Bari Aldo Moro, Italy
    SWAP Research Group
  • Variations: The model release has been supervised fine-tuning (SFT) using QLoRA 4bit, on two instruction-based datasets. DPO approach over the jondurbin/truthy-dpo-v0.1 dataset is used to align with human preferences for helpfulness and safety.
  • Input: Models input text only.
  • Language: Multilingual ๐Ÿ + Italian ๐Ÿ‡ฎ๐Ÿ‡น
  • Output: Models generate text and code only.
  • Model Architecture: Llama 3 architecture.
  • Context length: 8K, 8192.
  • Library Used: Unsloth

Playground

To use the model directly, there are many ways to get started, choose one of the following ways to experience it.

Prompt Template

<|start_header_id|>system<|end_header_id|>

{ SYS Prompt }<|eot_id|><|start_header_id|>user<|end_header_id|>

{ USER Prompt }<|eot_id|><|start_header_id|>assistant<|end_header_id|>

{ ASSIST Prompt }<|eot_id|>

Transformers

For direct use with transformers, you can easily get started with the following steps.

  • Firstly, you need to install transformers via the command below with pip.

    pip install -U transformers
    
  • Right now, you can start using the model directly.

    import torch
    from transformers import (
        AutoModelForCausalLM,
        AutoTokenizer,
    )
    
    base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA"
    model = AutoModelForCausalLM.from_pretrained(
        base_model,
        torch_dtype=torch.bfloat16,
        device_map="auto",
    )
    tokenizer = AutoTokenizer.from_pretrained(base_model)
    
    messages = [
        {"role": "system", "content": {"role": "system", "content": "Sei un an assistente AI per la lingua Italiana di nome LLaMAntino-3 ANITA \
        (Advanced Natural-based interaction for the ITAlian language). \
        Rispondi nella lingua usata per la domanda in modo chiaro, semplice ed esaustivo. "},
        {"role": "user", "content": "Chi รจ Carlo Magno?"}
    ]
    
    #Method 1
    prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
    for k,v in inputs.items():
        inputs[k] = v.cuda()
    outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.9, temperature=0.6)
    results = tokenizer.batch_decode(outputs)[0]
    print(results)
    
    #Method 2
    import transformers
    pipe = transformers.pipeline(
        model=model,
        tokenizer=tokenizer,
        return_full_text=False, # langchain expects the full text
        task='text-generation',
        max_new_tokens=512, # max number of tokens to generate in the output
        temperature=0.6,  #temperature for more or less creative answers
        do_sample=True,
        top_p=0.9,
    )
    
    sequences = pipe(messages)
    for seq in sequences:
        print(f"{seq['generated_text']}")
    
  • Additionally, you can also use a model with 4bit quantization to reduce the required resources at least. You can start with the code below.

    import torch
    from transformers import (
        AutoModelForCausalLM,
        AutoTokenizer,
        BitsAndBytesConfig,
    )
    
    base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA"
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_use_double_quant=False,
    )
    model = AutoModelForCausalLM.from_pretrained(
        base_model,
        quantization_config=bnb_config,
        device_map="auto",
    )
    tokenizer = AutoTokenizer.from_pretrained(base_model)
    
    messages = [
       {"role": "system", "content": {"role": "system", "content": "Sei un an assistente AI per la lingua Italiana di nome LLaMAntino-3 ANITA \
       (Advanced Natural-based interaction for the ITAlian language). \
       Rispondi nella lingua usata per la domanda in modo chiaro, semplice ed esaustivo. "},
        {"role": "user", "content": "Chi รจ Carlo Magno?"}
    ]
    
    #Method 1
    prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
    for k,v in inputs.items():
        inputs[k] = v.cuda()
    outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.9, temperature=0.6)
    results = tokenizer.batch_decode(outputs)[0]
    print(results)
    
    #Method 2
    import transformers
    pipe = transformers.pipeline(
        model=model,
        tokenizer=tokenizer,
        return_full_text=False, # langchain expects the full text
        task='text-generation',
        max_new_tokens=512, # max number of tokens to generate in the output
        temperature=0.6,  #temperature for more or less creative answers
        do_sample=True,
        top_p=0.9,
    )
    
    sequences = pipe(messages)
    for seq in sequences:
        print(f"{seq['generated_text']}")
    

Unsloth

For direct use with unsloth, you can easily get started with the following steps.

  • Firstly, you need to install unsloth via the command below with pip.

    pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
    pip install --no-deps xformers trl peft accelerate bitsandbytes
    
  • Initialize and optimize the model before use.

    from unsloth import FastLanguageModel
    import torch
    
    base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA"
    model, tokenizer = FastLanguageModel.from_pretrained(
        model_name = base_model,
        max_seq_length = 8192,
        dtype = None,
        load_in_4bit = True, # Change to `False` if you don't want to use 4bit quantization.
    )
    FastLanguageModel.for_inference(model)
    
  • Right now, you can start using the model directly.

    messages = [
        {"role": "system", "content": {"role": "system", "content": "Sei un an assistente AI per la lingua Italiana di nome LLaMAntino-3 ANITA \
       (Advanced Natural-based interaction for the ITAlian language). \
       Rispondi nella lingua usata per la domanda in modo chiaro, semplice ed esaustivo. "},
        {"role": "user", "content": "Chi รจ Carlo Magno?"}
    ]
    prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
    for k,v in inputs.items():
        inputs[k] = v.cuda()
    outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.9, temperature=0.6)
    results = tokenizer.batch_decode(outputs)[0]
    print(results)
    

Evaluation

Open LLM Leaderboard:

Evaluated with lm-evaluation-benchmark-harness for the Open Italian LLMs Leaderboard

   lm_eval --model hf --model_args pretrained=HUGGINGFACE_MODEL_ID  --tasks hellaswag_it,arc_it  --device cuda:0 --batch_size auto:2
   lm_eval --model hf --model_args pretrained=HUGGINGFACE_MODEL_ID  --tasks m_mmlu_it --num_fewshot 5  --device cuda:0 --batch_size auto:2 
Metric Value
Avg. --
Arc_IT 0.5714
Hellaswag_IT 0.7093
MMLU_IT --

Unsloth

Unsloth, a great tool that helps us easily develop products, at a lower cost than expected.

Citation instructions

@misc{basile2023llamantino,
      title={LLaMAntino: LLaMA 2 Models for Effective Text Generation in Italian Language}, 
      author={Pierpaolo Basile and Elio Musacchio and Marco Polignano and Lucia Siciliani and Giuseppe Fiameni and Giovanni Semeraro},
      year={2023},
      eprint={2312.09993},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@article{llama3modelcard,
  title={Llama 3 Model Card},
  author={AI@Meta},
  year={2024},
  url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}