metadata
library_name: peft
base_model: sysong11/dapt-kogpt
Model Card for Model ID
This repo contains a low-rank adapter for domain-adapted KoGPT fit on a small supervised tuning dataset for summarization.
How to Get Started with the Model
import json
from random import randrange
import torch
from peft import LoraConfig, get_peft_model
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
model1 = AutoModelForCausalLM.from_pretrained(
"sysong11/dapt-kogpt", torch_dtype="auto", device_map="auto"
)
lora_path = "sysong11/dapt-kogpt-sum-adapter"
model2 = PeftModel.from_pretrained(model1, lora_path, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(lora_path)
test_data = []
with open("./datasets/test.json", "rb") as f:
for line in f:
test_data.append(json.loads(line))
prompt_template = """\
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
msg = "Q:๋ค์ ๋ฌธ์๋ฅผ ์์ฝ ํ์ธ์, Context:{context}"
ix = randrange(len(test_data))
print(ix)
datapoint = test_data[ix]
ref = test_data[ix]["summary_text"]
system_prompt = "You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can."
tokens = tokenizer.encode(
prompt_template.format(
system_prompt=system_prompt,
prompt=msg.format(context=datapoint["original_text"]),
),
return_tensors="pt",
).to(device="cuda", non_blocking=True)
gen_tokens = model2.generate(
input_ids=tokens,
do_sample=False,
temperature=0.5,
max_length=1024,
pad_token_id=63999,
eos_token_id=63999,
)
inputs = tokenizer.batch_decode([gen_tokens[0][: tokens[0].shape[0]]])[0]
generated = tokenizer.batch_decode([gen_tokens[0][tokens[0].shape[0] :]])[0].replace(
"<|im_end|>", ""
)
print(inputs)
print("generated:")
print(generated)
Framework versions
- PEFT 0.7.1