SentenceTransformer based on Rajan/NepaliBERT
This is a sentence-transformers model finetuned from Rajan/NepaliBERT. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Rajan/NepaliBERT
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("syubraj/sentence_similarity_nepali_v2")
# Run inference
sentences = [
'रातो, डबल डेकर बस।',
'रातो डबल डेकर बस।',
'दुई कालो कुकुर हिउँमा हिंड्दै।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
stsb-dev-nepali
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6971 |
spearman_cosine | 0.6623 |
pearson_manhattan | 0.6332 |
spearman_manhattan | 0.6079 |
pearson_euclidean | 0.634 |
spearman_euclidean | 0.609 |
pearson_dot | 0.4848 |
spearman_dot | 0.5306 |
pearson_max | 0.6971 |
spearman_max | 0.6623 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,599 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 6 tokens
- mean: 19.5 tokens
- max: 81 tokens
- min: 6 tokens
- mean: 19.43 tokens
- max: 75 tokens
- min: 0.0
- mean: 0.54
- max: 1.0
- Samples:
sentence_0 sentence_1 label एक व्यक्ति प्याज काट्दै छ।
एउटा बिरालो शौचालयमा पपिङ गर्दैछ।
0.0
क्यानडाको तेल रेल विस्फोटमा थप मृत्यु हुने अपेक्षा गरिएको छ
क्यानडामा रेल दुर्घटनामा पाँच जनाको मृत्यु भएको छ
0.5599999904632569
एउटी महिला झिंगा माझ्दै छिन्।
एउटी महिला केही झिंगा माझ्दै।
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 100multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 100max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | stsb-dev-nepali_spearman_max |
---|---|---|---|
1.0 | 288 | - | 0.5355 |
1.7361 | 500 | 0.0723 | - |
2.0 | 576 | - | 0.5794 |
3.0 | 864 | - | 0.6108 |
3.4722 | 1000 | 0.047 | 0.6147 |
4.0 | 1152 | - | 0.6259 |
5.0 | 1440 | - | 0.6356 |
5.2083 | 1500 | 0.034 | - |
6.0 | 1728 | - | 0.6329 |
6.9444 | 2000 | 0.0217 | 0.6375 |
7.0 | 2016 | - | 0.6382 |
8.0 | 2304 | - | 0.6468 |
8.6806 | 2500 | 0.0137 | - |
9.0 | 2592 | - | 0.6348 |
10.0 | 2880 | - | 0.6332 |
10.4167 | 3000 | 0.0102 | 0.6427 |
11.0 | 3168 | - | 0.6370 |
12.0 | 3456 | - | 0.6515 |
12.1528 | 3500 | 0.0084 | - |
13.0 | 3744 | - | 0.6546 |
13.8889 | 4000 | 0.0069 | 0.6400 |
14.0 | 4032 | - | 0.6610 |
15.0 | 4320 | - | 0.6495 |
15.625 | 4500 | 0.006 | - |
16.0 | 4608 | - | 0.6574 |
17.0 | 4896 | - | 0.6486 |
17.3611 | 5000 | 0.0053 | 0.6589 |
18.0 | 5184 | - | 0.6592 |
19.0 | 5472 | - | 0.6488 |
19.0972 | 5500 | 0.0047 | - |
20.0 | 5760 | - | 0.6436 |
20.8333 | 6000 | 0.0044 | 0.6576 |
21.0 | 6048 | - | 0.6515 |
22.0 | 6336 | - | 0.6541 |
22.5694 | 6500 | 0.0041 | - |
23.0 | 6624 | - | 0.6549 |
24.0 | 6912 | - | 0.6571 |
24.3056 | 7000 | 0.0037 | 0.6603 |
25.0 | 7200 | - | 0.6699 |
26.0 | 7488 | - | 0.6653 |
26.0417 | 7500 | 0.0037 | - |
27.0 | 7776 | - | 0.6609 |
27.7778 | 8000 | 0.0033 | 0.6578 |
28.0 | 8064 | - | 0.6606 |
29.0 | 8352 | - | 0.6614 |
29.5139 | 8500 | 0.0031 | - |
30.0 | 8640 | - | 0.6579 |
31.0 | 8928 | - | 0.6688 |
31.25 | 9000 | 0.0028 | 0.6650 |
32.0 | 9216 | - | 0.6639 |
32.9861 | 9500 | 0.0027 | - |
33.0 | 9504 | - | 0.6624 |
34.0 | 9792 | - | 0.6646 |
34.7222 | 10000 | 0.0025 | 0.6530 |
35.0 | 10080 | - | 0.6587 |
36.0 | 10368 | - | 0.6671 |
36.4583 | 10500 | 0.0025 | - |
37.0 | 10656 | - | 0.6614 |
38.0 | 10944 | - | 0.6602 |
38.1944 | 11000 | 0.0024 | 0.6576 |
39.0 | 11232 | - | 0.6665 |
39.9306 | 11500 | 0.0023 | - |
40.0 | 11520 | - | 0.6663 |
41.0 | 11808 | - | 0.6734 |
41.6667 | 12000 | 0.0021 | 0.6633 |
42.0 | 12096 | - | 0.6667 |
43.0 | 12384 | - | 0.6679 |
43.4028 | 12500 | 0.002 | - |
44.0 | 12672 | - | 0.6701 |
45.0 | 12960 | - | 0.6650 |
45.1389 | 13000 | 0.0019 | 0.6680 |
46.0 | 13248 | - | 0.6631 |
46.875 | 13500 | 0.0018 | - |
47.0 | 13536 | - | 0.6643 |
48.0 | 13824 | - | 0.6631 |
48.6111 | 14000 | 0.0017 | 0.6648 |
49.0 | 14112 | - | 0.6648 |
50.0 | 14400 | - | 0.6619 |
50.3472 | 14500 | 0.0017 | - |
51.0 | 14688 | - | 0.6633 |
52.0 | 14976 | - | 0.6622 |
52.0833 | 15000 | 0.0016 | 0.6612 |
53.0 | 15264 | - | 0.6670 |
53.8194 | 15500 | 0.0015 | - |
54.0 | 15552 | - | 0.6618 |
55.0 | 15840 | - | 0.6641 |
55.5556 | 16000 | 0.0015 | 0.6617 |
56.0 | 16128 | - | 0.6669 |
57.0 | 16416 | - | 0.6645 |
57.2917 | 16500 | 0.0014 | - |
58.0 | 16704 | - | 0.6642 |
59.0 | 16992 | - | 0.6579 |
59.0278 | 17000 | 0.0013 | 0.6592 |
60.0 | 17280 | - | 0.6589 |
60.7639 | 17500 | 0.0014 | - |
61.0 | 17568 | - | 0.6685 |
62.0 | 17856 | - | 0.6673 |
62.5 | 18000 | 0.0012 | 0.6669 |
63.0 | 18144 | - | 0.6665 |
64.0 | 18432 | - | 0.6626 |
64.2361 | 18500 | 0.0012 | - |
65.0 | 18720 | - | 0.6619 |
65.9722 | 19000 | 0.0012 | 0.6643 |
66.0 | 19008 | - | 0.6651 |
67.0 | 19296 | - | 0.6628 |
67.7083 | 19500 | 0.0011 | - |
68.0 | 19584 | - | 0.6658 |
69.0 | 19872 | - | 0.6615 |
69.4444 | 20000 | 0.0011 | 0.6627 |
70.0 | 20160 | - | 0.6657 |
71.0 | 20448 | - | 0.6663 |
71.1806 | 20500 | 0.0011 | - |
72.0 | 20736 | - | 0.6634 |
72.9167 | 21000 | 0.001 | 0.6649 |
73.0 | 21024 | - | 0.6632 |
74.0 | 21312 | - | 0.6658 |
74.6528 | 21500 | 0.001 | - |
75.0 | 21600 | - | 0.6639 |
76.0 | 21888 | - | 0.6601 |
76.3889 | 22000 | 0.001 | 0.6623 |
77.0 | 22176 | - | 0.6607 |
78.0 | 22464 | - | 0.6613 |
78.125 | 22500 | 0.0009 | - |
79.0 | 22752 | - | 0.6613 |
79.8611 | 23000 | 0.0009 | 0.6615 |
80.0 | 23040 | - | 0.6615 |
81.0 | 23328 | - | 0.6617 |
81.5972 | 23500 | 0.0008 | - |
82.0 | 23616 | - | 0.6604 |
83.0 | 23904 | - | 0.6605 |
83.3333 | 24000 | 0.0008 | 0.6602 |
84.0 | 24192 | - | 0.6628 |
85.0 | 24480 | - | 0.6603 |
85.0694 | 24500 | 0.0008 | - |
86.0 | 24768 | - | 0.6602 |
86.8056 | 25000 | 0.0008 | 0.6592 |
87.0 | 25056 | - | 0.6611 |
88.0 | 25344 | - | 0.6612 |
88.5417 | 25500 | 0.0008 | - |
89.0 | 25632 | - | 0.6607 |
90.0 | 25920 | - | 0.6598 |
90.2778 | 26000 | 0.0008 | 0.6607 |
91.0 | 26208 | - | 0.6615 |
92.0 | 26496 | - | 0.6615 |
92.0139 | 26500 | 0.0007 | - |
93.0 | 26784 | - | 0.6609 |
93.75 | 27000 | 0.0007 | 0.6607 |
94.0 | 27072 | - | 0.6612 |
95.0 | 27360 | - | 0.6624 |
95.4861 | 27500 | 0.0007 | - |
96.0 | 27648 | - | 0.6627 |
97.0 | 27936 | - | 0.6618 |
97.2222 | 28000 | 0.0007 | 0.6619 |
98.0 | 28224 | - | 0.6621 |
98.9583 | 28500 | 0.0007 | - |
99.0 | 28512 | - | 0.6623 |
100.0 | 28800 | - | 0.6623 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for syubraj/sentence_similarity_nepali_v2
Base model
Rajan/NepaliBERTDataset used to train syubraj/sentence_similarity_nepali_v2
Space using syubraj/sentence_similarity_nepali_v2 1
Evaluation results
- Pearson Cosine on stsb dev nepaliself-reported0.697
- Spearman Cosine on stsb dev nepaliself-reported0.662
- Pearson Manhattan on stsb dev nepaliself-reported0.633
- Spearman Manhattan on stsb dev nepaliself-reported0.608
- Pearson Euclidean on stsb dev nepaliself-reported0.634
- Spearman Euclidean on stsb dev nepaliself-reported0.609
- Pearson Dot on stsb dev nepaliself-reported0.485
- Spearman Dot on stsb dev nepaliself-reported0.531
- Pearson Max on stsb dev nepaliself-reported0.697
- Spearman Max on stsb dev nepaliself-reported0.662