d.tsimerman
initial commit
2489de7
|
raw
history blame
2.02 kB
---
tags:
- bert
license: mit
language:
- ru
---
# multilabel-context-russian-inapropriate-messages
[BERT classifier from Skoltech](https://huggingface.co/Skoltech/russian-inappropriate-messages), finetuned on contextual data with 4 labels.
# Training
*Skoltech/russian-inappropriate-messages* was finetuned on a multiclass data with four classes
1) OK label -- the message is OK in context and does not intent to offend or somehow harm the reputation of a speaker.
2) Toxic label -- the message might be seen as a offensive one in given context.
3) Severe toxic label -- the message is offencive, full of anger and was written to provoke a fight or any other discomfort
4) Risks label -- the message touches on sensitive topics and can harm the reputation of the speaker (i.e. religion, politics)
The model was finetuned on DATASET_LINK.
# Evaluation results
Model achieves the following results:
| | OK - Precision | OK - Recall | OK - F1-score | TOXIC - Precision | TOXIC - Recall | TOXIC - F1-score | SEVERE TOXIC - Precision | SEVERE TOXIC - Recall | SEVERE TOXIC - F1-score | RISKS - Precision | RISKS - Recall | RISKS - F1-score |
|-------------------------|----------------|-------------|---------------|-------------------|----------------|------------------|--------------------------|-----------------------|-------------------------|-------------------|----------------|------------------|
| DATASET_TWITTER val.csv | 0.883 | 0.913 | 0.896 | 0.368 | 0.330 | 0.348 | 0.515 | 0.468 | 0.490 | 0.659 | 0.535 | 0.591 |
| DATASET_GENA val.csv | 0.953 | 0.927 | 0.940 | 0.260 | 0.343 | 0.295 | 0.666 | 0.806 | 0.729 | 0.523 | 0.423 | 0.46 |
The work was done during internship at Tinkoff.