|
--- |
|
license: mit |
|
widget: |
|
- text: "@@ПЕРВЫЙ@@ привет @@ВТОРОЙ@@ привет @@ПЕРВЫЙ@@ как дела? @@ВТОРОЙ@@" |
|
example_title: "how r u" |
|
- text: "@@ПЕРВЫЙ@@ что ты делал на выходных? @@ВТОРОЙ@@" |
|
example_title: "wyd" |
|
language: |
|
- ru |
|
tags: |
|
- conversational |
|
--- |
|
|
|
This generation model is based on [sberbank-ai/rugpt3medium_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3medium_based_on_gpt2). It's trained on large corpus of dialog data and can be used for buildning generative conversational agents |
|
|
|
The model was trained with context size 3 |
|
|
|
|
|
On a private validation set we calculated metrics introduced in [this paper](https://arxiv.org/pdf/2001.09977.pdf): |
|
- Sensibleness: Crowdsourcers were asked whether model's response makes sense given the context |
|
- Specificity: Crowdsourcers were asked whether model's response is specific for given context, in other words we don't want our model to give general and boring responses |
|
- SSA which is the average of two metrics above (Sensibleness Specificity Average) |
|
|
|
| | sensibleness | specificity | SSA | |
|
|:----------------------------------------------------|---------------:|--------------:|------:| |
|
| [tinkoff-ai/ruDialoGPT-small](https://huggingface.co/tinkoff-ai/ruDialoGPT-small) | 0.64 | 0.5 | 0.57 | |
|
| [tinkoff-ai/ruDialoGPT-medium](https://huggingface.co/tinkoff-ai/ruDialoGPT-medium) | 0.78 | 0.69 | 0.735 | |
|
|
|
|
|
How to use: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelWithLMHead |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('tinkoff-ai/ruDialoGPT-medium') |
|
model = AutoModelWithLMHead.from_pretrained('tinkoff-ai/ruDialoGPT-medium') |
|
inputs = tokenizer('@@ПЕРВЫЙ@@ привет @@ВТОРОЙ@@ привет @@ПЕРВЫЙ@@ как дела? @@ВТОРОЙ@@', return_tensors='pt') |
|
generated_token_ids = model.generate( |
|
**inputs, |
|
top_k=10, |
|
top_p=0.95, |
|
num_beams=3, |
|
num_return_sequences=3, |
|
do_sample=True, |
|
no_repeat_ngram_size=2, |
|
temperature=1.2, |
|
repetition_penalty=1.2, |
|
length_penalty=1.0, |
|
eos_token_id=50257, |
|
max_new_tokens=40 |
|
) |
|
context_with_response = [tokenizer.decode(sample_token_ids) for sample_token_ids in generated_token_ids] |
|
context_with_response |
|
``` |